
No. 1 i-Technology Magazine in the World

PLUS...PLUS...

The Performance
of EJB 3.0

Dealing with
Open Source Software

JDJ.SYS-CON.COM VOL.10 ISSUE:9

RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2005

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

IN THIS ISSUE...
Leveraging Open Source Solutions to
Improve Productivity While Using EJBs
PAGE 8

Spring Web Flow
PAGE 14

Intelligent Web Applications with AJAX
PAGE 28

Navigating the Global Enterprise
PAGE 56

A Blueprint for Developing
Language Tools

HELP I’M OUT OF MEMORY! PAGE 36

3September 2005JDJ.SYS-CON.com

eptember is here and since the
name comes from the Latin septem,
for “seven” – September having
been until 153 BCE not the ninth

but the seventh month of the Roman calen-
dar – I have no hesitation in saying that it’s
an appropriate month to pluck just seven
items from the wealth of information and
insight in this issue and say just a little about
each of them, to help you to decide what to
read first in this issue of JDJ.
 In Part Two of his new “Gas Station”
series, Yakov Fain gives us a crash course on
open source software, through a conversa-
tion with the best-selling author of Succeed-
ing with Open Source, Bernard Golden. They
discuss licensing and QA, and Golden
notes in passing that one
advantage to open source,
from the user perspec-
tive, is that open source
“breaks the linkage
between product and
company.” In other
words, if a product is
useful but the com-
pany behind it is un-
successful, open source
means that the user com-
munity will still have access
to the product source base and
can continue using the product even if
the company goes bust – very different from
the dot-com days, when companies would
shut down and leave their users in the lurch.
 Java experts Peter Zadrozny and Raghu
Kodali road test EJB 3.0’s performance for
us – using Oracle’s implementation of the
specification – by doing a few things that
developers typically do with EJB 2.1 and
then trying out the equivalent with EJB 3.0.
They use a developer’s preview of EJB 3.0
and find themselves very attracted to the
simplicity and power of EJB 3.0. “The won-
derful work done with annotations and the
persistence, the ability to use POJOs, and
the ability to test outside of the container
are very attractive all by themselves,” the
authors note.
 J2EE technology provides a good base to
develop and deploy AJAX-based applica-
tions, so in this issue we say a major hello to
Asynchronous JavaScript + XMLHTTPRe-

quest. Victor Rasputnis and Anatole Tarta-
kovsky – who have been developing AJAX
applications for the past five years and attest
that “it’s sound and very effective” – pres-
ent a simple example and remind us that
the best known AJAX applications already
“out there” are probably Google Maps and
Google Suggest from Google Labs (http://
labs.google.com).
 Java architect Kishore Kumar looks at
part of the Spring Web application develop-
ment suite, Spring Web Flow (SWF), which
he finds to be a very powerful and elegant
Web flow solution, suitable – as he shows in
a sample scenario – for handling complex
page navigations in any Web application.

 Two of JBoss’s best-known devel-
opers, lead developer Julien Viet

and his colleague Roy Russo,
discuss the overwhelming

influence of the Portlet
Specification (JSR 168)
and wrestle with the
question, “Are portals
the magic bullet of Web
application develop-

ment?” The case for the
use of portal software is

not cut and dry, the authors
suggest, but there are numer-

ous advantages in adopting it.
 Well-known Java writer Paul

Mukherjee in “Blueprint for Developing
Language Tools” presents an approach to
developing language tools that has been
used extensively for several products and
projects that he has been involved with. The
key, he shows, is to separate the triumvirate
of core functionality, input format, and
parsing to ensure the flexibility required for
evolution over time.
 Finally, in my (highly subjective) pick of
seven pieces from the dozen or so excel-
lent items in this issue: this month’s “Back
Page” is by JDJ’s own Jason Bell, written from
his newfound standpoint as founder of a
company – a B2B auction site for the airline
industry – using all his own technology and
launched without funding. Be sure to read
it, because it is a heartening entrepreneurial
i-Technology tale in its own right. As Jason
writes, “If you’ve ever wondered, ‘What if…?’
don’t wonder any more. Do it!”

From the Group Publisher

Java Developers:
‘Just Do It!’

 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Associate Editor: Seta Papazian
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Calvin Austin, Jason Bell, Jason Collins,

Shyman Kumar Doddavula, Yakov Fain, Jeremy Geelan,
Onno Kluyt, Raghu Kodali, Kishore Kumar,

Alex Maclinovsky, Paul Mukherjee, Igor Nys, Michael
Poulin, Victor Rasputnis, Roy Russo, Anatole Tartakovsky,

Julien Viet, Joe Winchester, Peter Zadrozny

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2005 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Dorothy Gil, dorothy@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON

at conferences and

trade shows, speaking

to technology

audiences both in

North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

S

‘Magic
Are Portals the

of Web Application Development?
Bullet’

5September 2005JDJ.SYS-CON.com

SEPTEMBER 2005 VOLUME:10 ISSUE:9

contents
JDJ Cover Story

50

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

Java Developers: ‘Just Do It!’
by Jeremy Geelan.................................3

JAVA ENTERPRISE VIEWPOINT

Corporate Java Training
by Yakov Fain.................................6

EJB

Leveraging Open Source
Solutions to Improve Productivity
While Using EJBs
Improving enterprise-level business
services productivity
by Shyman Kumar Doddavula.................................8

TESTING

The Performance of EJB 3.0
The simplicity and power
by Peter Zadrozny and Raghu Kodali.................................20

TECHNIQUES

A Blueprint for Developing
Language Tools
A proven approach to making them modular,
extensible, and maintainable
 by Paul Mukherjee.................................44

DESKTOP JAVA VIEWPOINT

One Size Fits No One
by Joe Winchester.................................48
NAVIGATION

Navigating the Global Enterprise
Developing a ubiquitous navigation utility
by Alex Maclinovsky.................................56
JSR WATCH

JCP Launches New Program
First constellation of Star Spec Leads takes shape
– Part 2
by Onno Kluyt.................................60
@ THE BACKPAGE

Do I Really Need That?
by Jason Bell.................................62

YAKOV’S GAS STATION

Dealing with Open Source
Software Part Two
by Yakov Fain.................................24

CASE STUDY

What Java Developers Can Learn
from Boston’s Big Dig...
...using SAP NetWeaver
by Jason Collins.................................34

CORE AND INTERNALS VIEWPOINT

Help I’m Out of Memory!
by Calvin Austin.................................36

SECURITY

How to Deal with Security When
Building Application Architecture
Are you ready to face the challenge?
 by Michael Poulin.................................38

Spring Web Flow
by Kishore Kumar

14

Intelligent Web Applications
with AJAX

by Victor Rasputnis, Anatole Tartakovsky, and Igor Nys

28

by Roy Russo and Julien Viet

The many advantages to utilizing portal software

‘Magic
Are Portals the

of Web Application Development?
Bullet’

JDJ.SYS-CON.com6 September 2005

ack in the ’90s, we became ac-
customed to receiving half-inch
thick glossy brochures from various
training companies. Five days of

such instructor-led training would cost
more than $2,000. For corporate employees
this was “other people’s money,” and usually
employees were entitled to at least one week
of such training annually.
 In ’98, I was finishing my PowerBuilder
career working as an independent contrac-
tor and decided to switch to Java. I had
learned the language by reading dozens of
books (yes, we used to buy technical books
in the last century). But when you switch
from one language to another, the most
valuable knowledge is not in the books. I
needed to know how real-world Java proj-
ects were designed and developed, so I paid
$2,500 for a week of WebLogic training, and
it was worth every penny. The instructor
was a knowledgeable guy and this course
was an eye-opener. I figured out what had
to go in servlets and what went into EJBs,
what is a Façade pattern, and what to watch
for. This training worked out well, because
of my motivation: I needed to pay my bills,
and when you apply for a Java position, your
previous PowerBuilder experience (other
than an understanding of OOP) doesn’t
count.
 In 2001, the U.S. economy went into a
long recession. When an enterprise goes
through difficult times, its management
lays off some people and immediately
cuts the training budget. The mandatory
trainings like Six Sigma or CMM will always
survive, but the real stuff gets frozen. In the
beginning of this millennium, those training
companies that managed to survive reduced
tuition costs and their fat brochures turned
into flyers. Course enrollment dropped dras-
tically. They would even run classes for just
three students. If the course was designed
for five days, the corporate clients would ask
for it to be delivered in three days.
 Less expensive online training came
into the picture, but it proved to be boring
and less effective than classroom training.
However, since the economy remained
in recession for three years, many people
suspended their computer education and
started to whine about outsourcing.

 It’s now 2005 and instructor-led training
is back, and tuition is getting higher again.
Guess what the most expensive train-
ing is these days? Some companies that
make open source (free) software, charge a
premium for training: $3,000 for a four-day
course. Well, they need to make money
somehow, but I’m sure this won’t last long;
a new breed of startups that sells support of
the open source tools will balance supply
and demand by offering more reasonably
priced training.

Who Is Teaching
 When I was doing contract training, it
worked as follows: I was getting an e-mail
with the title of the class, airplane tickets, an
overnight package with a training manual,
and a CD with code samples. Smaller
training providers don’t develop their own
manuals, but purchase the courseware from
third parties. Once I had to deliver a one-day,
MQ Series training. The manual was poorly
written, but since I was right off a messag-
ing project, I had lots of things to say on the
subject. The students were happy and the
class was saved. But I have to admit that in
some cases, I’ve also taught technologies of
which I have only book knowledge. Some
instructors just read the manual aloud.
Their version of the manual may include
additional comments that you don’t see, so it
looks as if they know more than you.

Finding Quality Java Training
 Most of the large corporations have a list
of approved training vendors and courses
to choose from, and it seems that there is
nothing you can do about it. Wrong. Instead
of using training vendors, find a Java-related
conference or a seminar. Such seminars
always have technical sessions on Java tech-
nologies with first-class speakers who are
practitioners, and many of them are book
authors as well. These seminars usually run
training over parallel tracks so you can pick
the classes that match your objectives. These
events are less expensive than comparable
vendor training, and the quality is better
(just try to avoid marketing presentations,
unless you are really interested in a particu-
lar product).

–continued on page 13

Java Enterprise Viewpoint

Yakov Fain
Contributing Editor

Corporate
Java Training

B

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:
 Miles Silverman miles@sys-con.com

Advertising Sales Director:
 Robyn Forma robyn@sys-con.com

National Sales and Marketing Manager:
 Dennis Leavey dennis@sys-con.com

Advertising Sales Manager:
 Megan Mussa megan@sys-con.com

Associate Sales Manager:
 Dorothy Gil dorothy@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Associate Editor:
 Seta Papazian seta@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com

Lead Designer:
 Tami Lima tami@sys-con.com

Art Director:
 Alex Botero alex@sys-con.com

Associate Art Directors:
 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Video Production:
 Frank Moricco frank@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:
 Stephen Kilmurray stephen@sys-con.com
 Vincent Santaiti vincent@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:
 Betty White betty@sys-con.com

Accounts Receivable:
 Gail Naples gailn@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com

National Sales Manager:
 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

Yakov Fain is a J2EE

architect and creator

of seminars “Weekend

with Experts” (www.

weekendwithexperts.com).

He is the author of the

best-selling book The Java
Tutorial for the Real World

and an e-book Java
Programming for Kids,

Parents and Grandparents.

Yakov also authored several

chapters for Java 2 Enterprise
Edition 1.4 Bible.

yakovfain@sys-con.com

JDJ.SYS-CON.com8 September 2005

his article provides a solution
for improving productivity in
scenarios where EJBs are used to
implement business services us-

ing Spring, an Open Source POJO con-
tainer, as a lightweight mock container
for testing and using XDoclet attributes
to define design-time considerations.
The proposed solution has been
validated using a POC. The subsequent
sections explain the problem context,
the different alternatives and their
pros and cons, the industry trends and
best practices, and a solution based on
these trends and best practices.

Problem Context
 One of the common debates while
developing a business service using
J2EE technologies is whether the EJB
model or a POJO model is a better
option. Let’s analyze the good and
bad aspects of these two choices. EJB
Containers are standards compliant,
usually backed by a vendor providing
support. They provide several features
required for enterprise-level business
services:
• Enabling the service to be accessible

remotely with inbuilt support for
clustering (with load balancing and
failover for the remote calls).

• Support for declarative transaction
demarcation (that enables better
reuse of the business services) with
support for JTA (for distributed
transactions) and propagation of
the transaction context even across
remote calls.

• Support for developing business ser-
vices with an asynchronous invoca-
tion model through JMS and MDBs.

• Support for making the business
services accessible as Web services
through standardized mechanisms.
They also provide support for EIS
integration through JCA.

• Support for declarative security and
propagation of the security context
across remote invocation too.

• Provide tools for development like
WSAD for WebSphere.

 One of the biggest complaints about
using the EJB model for developing
business services has been the long
build-deploy-test cycle involved in this
approach, which results in low pro-
ductivity. POJO Containers like Spring,
which is an open source framework,
have come up with solutions to fill this
gap by providing the framework needed
for developing business services using
a POJO model, wherein the services are

modeled as POJOs and Spring provides
features similar to the EJB container like
declarative transaction demarcation, etc.
Spring also provides a good configura-
tion mechanism similar to that provided
by an EJB container.
 Since Spring by itself doesn’t provide
the equivalent of JMS and MDBs and
many of the features required for enter-
prise application development, includ-
ing remoting, clustering etc., it can’t
be used to replace a J2EE container.
Developing the business services as
POJOs in Spring thus provide higher
productivity, but it usually results in
the services getting tied to Spring’s
equivalents of the J2EE container–pro-
vided features such as its declarative
transaction model, remoting model,
Web services stack, etc.

 J2EE containers usually provide more
robust, standards-compliant features
than their equivalents provided by
Spring. For example, J2EE containers
are more likely to support the lat-
est JSRs like JSR 109, which defines a
standard and portable mechanism for
packaging and deploying Web services,
and similarly JSR 181, which defines a
simple-to-use annotations-based model
for developing Web services. There are
several other JSRs such as 104, 105, 106,
156, and 157 for defining standards for
Web services that are more likely to
be supported by J2EE containers than
Spring. Similarly the remoting capabili-
ties provided by most commercial J2EE
containers provide advanced features
needed by enterprise services like sup-
port for clustering with load balancing
and failover for the remote calls as well
as transaction propagation across the
remote calls, etc., through the remote
EJB model and for the other models
built on them. Similarly as explained
in the article that is listed first in the
References section, the EJB end-point
model provides a simpler mechanism
for developing Web services since the
container takes care of serializing the
requests to the EJBs. In comparison, the
Web Tier end-point model is generally
supported by POJO containers that
require the POJO developers to take
care of the synchronization aspects. So,
strategically it’s better to rely on stan-
dards-compliant and vendor-supported
J2EE container features than Spring’s
equivalent features.

Trends
 The EJB3 spec is trying to address
some of these problems by provid-
ing an annotations/attributes-based
mechanism that will allow the busi-
ness services to be developed as PO-
JOs and allow all design-time consid-

EJB

by Shyman Kumar
Doddavula

Leveraging Open Source Solutions to
Improve Productivity While Using EJBs

T

Shyman Kumar Doddavula

works as a technical architect

in the J2EE Center of Excellence

Group at Infosys Technologies

Ltd. He has an MS in computer

science from Texas Tech

University and over 8 years

experience in software

development.

Improving enterprise-level business services productivity

9September 2005JDJ.SYS-CON.com

erations like transaction demarcation
and remoting to be defined through
annotations (see the fifth entry in
the References section). This enables
the EJB interfaces and stubs to be
autogenerated and allows the services
to be developed and unit tested as
POJOs. Some of the application server
vendors are offering test harnesses
and mock containers (refer to the test
harness, Reference #2, provided by
Oracle in their EJB3 preview, which
supports testing entity beans out of
the container) that provide the basic
container features like JNDI and CMT
needed to test services modeled as
POJOs with the annotations. Unfortu-
nately, EJB3 is still not finalized and it
will be long before AppServer vendors
provide support for it. The next issue is
extending the support provided by the
test harnesses for testing the business
services outside of an EJB container,
which may be limited and may not be
portable.

Industry Best Practices
 The following is a look at the best
practices, in terms of use of technolo-
gies while developing J2EE applica-
tions, and especially modeling the
business services:
• Use of Stateless Session Beans for

implementing the stateless busi-
ness services

 –A related pattern that recom-
mends the use of EJBs with POJOs
behind them (see Reference #3).

• Use of JMS and MDBs for business
logic with asynchronous invoca-
tion.

• Use of the J2EE container–pro-
vided features like the declarative
transaction demarcation (CMT)
mechanism and its Web services
stack–based features for making the
business logic accessible as Web
services.

• Use of POJO-based persistence
model.

Solution
Solution Strategy
 Using only Spring to model the
business services is flawed because it

wouldn’t be based on standards and
wouldn’t leverage the high-end features
provided by AppServer vendors, and
using only EJBs has the disadvantage of
low productivity. So, an ideal scenario
is to use a J2EE application framework
that combines the good aspects of
these two options. It should provide
a mechanism through which it allows
POJO-based development to enable
faster build-deploy-test cycles, thus
overcoming the productivity issues as-
sociated with EJBs, but then translates
all of the required features to J2EE/EJB
container features so that the applica-
tion can be deployed in an application
server leveraging the vendor-supported
container features. It should therefore
enable using a POJO container such as
Spring as a mock container for testing.

Solution Design
 It is possible to design a framework
based on the strategy defined earlier
using attributed-oriented program-
ming techniques that will allow
the core business logic to be devel-
oped and tested as POJOs and then
deployed as EJBs. All of the design-
level considerations for the business
services like its transactional require-
ments are specified using attributes.
Then a precompile step can generate
the descriptors and configurations
that allow the business services to be
executed in a POJO (Spring) container
as well as in EJB container contexts.
The Spring container can be leveraged
as the POJO container to enable easier
unit testing of the business services.
The “POJO using Spring”–based
implementation can be used for the
development and the daily unit test-
ing, while the EJB-based implementa-
tion can be used for occasional unit
testing and for the integration testing.
 JDK1.5 provides support for
annotations, which seems like a
natural choice for something like
this. However, since most applica-
tion servers currently don’t support
JDK1.5, XDoclet attributes or Apache
Commons Attributes can be used to
implement this to address the current
needs. A POC has been developed

using XDoclet attributes to validate
these concepts as explained below.
 The class diagram of a sample Or-
derService designed using this solution
is shown in Figure 1. The OrderService
interface is implemented by the POJO
OrderServiceImpl and the EJB wrapper
for it is generated. The design time con-
siderations like the transaction require-
ments of the createOrder() method
are specified as XDoclet attributes,
which are used to generate the POJO
Container(Spring) and EJB container–
specific deployment descriptors.
 The code samples for these are
shown in Listing 1.
 A few pojo_ejb_fw attributes (very
much similar to the EJB attributes)
are defined to define the Design-time
considerations like transaction require-
ments and local/remote interface
requirements.
 The “@pojo_ejb_fw.service” class-
level attribute is used to capture the
service-level configuration like the
service name, which is then trans-
lated to a Spring bean name for POJO
deployment and a JNDI name for an
EJB-based deployment.
 Similarly, the “@pojo_ejb_fw.transac-
tion” attributes are used to define
the transaction requirements at class
level as well as method level. These
attributes are defined to be compatible
with the EJB attributes so that it allows
for both POJO and EJB deployments.
 The “@pojo_ejb_fw.interface” attri-
bute is used to determine if a local/re-
mote EJB interface are required
 An XDoclet Task is created for
pojo_ejb_fw tags with one subtask
to generate the spring configuration
files for POJO-based development and
another to generate the EJB classes for
the EJB-based development. The List-
ing 1 sample class attributes translate
to the Spring configuration file shown
in Listing 2.

</bean>

<bean id=”transactionManager”

class=”com.infosys.j2ee.radien.spring.

MockPlatformTransactionManager”/>

<!-- End runtime configuration. -->

</beans>

An ideal scenario is to use a J2EE application framework
that combines the good aspects of these two options”“

JDJ.SYS-CON.com10 September 2005

 The Listing 1 sample class attri-
butes also translate to the following
bean class file that is then used by the
EJBDoclet to generate the Home, Local,
and Remote interfaces and the deploy-
ment descriptors (see Listing 3).

protected void onEjbCreate() throws

CreateException {

_myRadienServiceImpl = (OrderService) get-

ServiceLocator().getService(SERVICE_NAME);

}

/**

* creates an order.

* @ejb.interface-method view-type=”both”

* @ejb.transaction type=”Required”

*

*/

public void createOrder(com.infosys.j2ee.

radien.demo.order.domain.Order order) {

_myRadienServiceImpl.createOrder(order);

}

}

 This design strategy helps enforce
the best practice of putting business
logic behind EJBs in POJOs, besides
providing the mechanism to have the

application deployed with a POJO
implementation or an EJB-based
implementation.
 One of the design issues is how to
define the runtime-configuration infor-
mation. It can’t be specified
as class or method attributes as the
runtime information can’t be de-
termined during class design and
implementation. The way to solve this
is through the use of the pattern de-
scribed earlier while designing services
with the runtime configuration encap-
sulated using the Service Config class.
The configuration for these classes is
defined using a Spring-beans.xml file,
which is merged with the Spring.xml
file that is generated with the design-
time configuration information.

Comparison with Alternative
Options
 Table 1 provides a high-level com-
parison of the proposed solution with
the other alternative options.
 Testing the OrderService EJB would
require the following steps:
• Create the deployment descriptors.

• Create the EJB jar with the compiled
EJB classes and the descriptors
(Improving Productivity while using
EJBs - Draft Infosys Technologies Ltd
Confidential Information Infosys
Technologies Ltd Confidential
Information Page 10 of 10).

• Create an EAR file with the EJB JAR
file and its dependent JARs and
update the classpath in the mani-
fest file in the EJB JAR file with the
dependencies.

• Deploy the EAR file in an App Server.
• Create a JUnit test case that does a

JNDI lookup and calls the createOr-
der() method.

 Testing the OrderServiceImpl
Spring POJO would require the follow-
ing steps
• Create the Spring configuration file.
• Create a JUnit test case that initial-

izes Spring, looks up the POJO, and
calls the createOrder() method.

 Use of declarative transaction
demarcation is a recommended best
practice for better reusability of a
service in different contexts. A con-
tainer is needed to be able to test the
declarative transaction features, and
so a simple POJO model without a
container makes it difficult to test the
transactional behavior.
 If OrderService depends on say
InventoryService, it would be easier to
test OrderService if there is a configura-
tion mechanism where a mock of the
dependent InventoryService can be
provided. In an EJB-based model, if
the InventoryService is implemented
as an EJB, it will not be straightforward
to create its mock and provide it to an
OrderService EJB without requiring
code changes. Similarly, a simple POJO
model wouldn’t help either, since a
configuration mechanism and a de-
pendency lookup or injection mecha-
nism would be needed to make it easy
to plug in mocks.
 It can be seen from the above com-
parison that the “POJO with Container
(like Spring)” model makes it easier to

EJB

Use of declarative transaction demarcation is a recommended
best practice for better reusability of a service in different contexts”“

 Figure 1 Service UML

Service

OrderServiceConfig

AbstractStatelessSessionBean

Uses

createOrder()

<<EJBLocalInterface>>
OrderServiceLocal

<<POJO>>
OrderServiceImpl GenericServiceFactory

<<EJBSession>>
OrderServiceBean

<<EJBCreateMethod>> ejbCreate()
ejbRemove()
ejbActivate()
ejbPassivate()
setSessionContext()

<<instantiate>>
<<EJBRealizeLocal>>

Delegate To

<<EJBSessionLocalHomeInterface>>
OrderServiceLocalHome

<<EJBCreateMethod>> create()

OrderService

JDJ.SYS-CON.com12 September 2005

EJB

develop and test a service especially in
a Test Driven Development environ-
ment, and thus can improve productiv-
ity. But the EJB Model provides a solu-
tion that is standards-based and with
vendor-supported, enterprise-level
features. The proposed solution helps
develop a business service as a POJO
using the “POJO with Container(like
Spring)” model while at the same time
autogenerating the EJB stubs to wrap it
for the final deployment, thus provid-
ing the best of both worlds solution.

Even the transactional behavior can
be tested using the Spring declarative
transaction Model while using the EJB
CMT for the final deployment. The
EJB3 spec is also moving towards an
annotations-/attributes-based model
and so the proposed solution provides
an easier migration to EJB3 when it is
available without getting locked into
proprietary alternatives for EJBs like
Spring.

Conclusion
 The proposed solution allows
a POJO-based development with-
out compromising on the “Stick
to Standards” principle. It allows de-
veloping and testing business
services as POJOs, thus improving the
pro-ductivity, while at the same time
generating an EJB-based wrapper for
the final deployment, thus leveraging
the enterprise-level features like EJB
CMT based on JTA, clustered remot-
ing capability (through Remote EJBs)
etc., provided by the J2EE Containers.

The POC demonstrates the feasibil-
ity of the proposed solution and can
be extended further to a full-fledged
implementation of the solution.

References
• JSR 109: Web Services Inside of

J2EE Apps: http://www.onjava.
com/pub/a/onjava/2002/08/07/
j2eewebsvs.html?page=1

• How-To Build out-of-container
example using EJB 3.0: http://
www.oracle.com/technology/
tech/java/oc4j/ejb3/howtos/
howtoejb30outofcontainer/doc/
how-to-ejb30-out-of-container.
html

• An Introduction to Attribute-
Oriented Programming: http://
dssg.cs.umb.edu/resources/attri-
bute-oriented-programming.html

• Simplifying EJB Development
with EJB 3.0: http://www.oracle.
com/technology/tech/java/news-
letter/articles/simplifying_ejb3.
html

 Table 1

����������
�����������
���������

���������
���������
��������

��������
��������

�������

����������
�����

�����������
������������

������������

��������������
������

������������
������������

���������

����

���

���

��

��

���

��

����

��

��

���

���

����

��

���

����

���

����

���

���

Listing 1

package com.infosys.j2ee.radien.demo.order.service;

import com.infosys.j2ee.radien.core.Service;

import com.infosys.j2ee.radien.demo.order.domain.Order;

/**

* Example of a simple Radien Service

*

* @radien.service id=”OrderService”

* name=”OrderService”

* type=”Stateless”

* view-type=”both”

*

*

* @radien.transaction type=”Required”

* @radien.transaction-type type=”Container”

*

*

* @weblogic.pool initial-beans-in-free-pool=”1”

* max-beans-in-free-pool=”3”

*/

public interface OrderService extends Service{

/**

* creates an order.

*

* @radien.interface-method view-type=”both”

*

* @radien.transaction type=”Required”

*/

public void createOrder(Order order);

}

Listing 2

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE beans PUBLIC

“-//SPRING//DTD BEAN//EN”

“http://www.springframework.org/dtd/spring-beans.dtd”>

<beans

default-autowire=”no”

default-lazy-init=”false”

default-dependency-check=”none”

>

<!-- Begin design time configuration. -->

<bean id=”spring-services” lazy-init=”true”

class=”org.springframework.context.support.ClassPathXmlApplicationC

ontext”>

<constructor-arg>

<list><value>spring.xml</value></list>

</constructor-arg>

<constructor-arg type=”boolean”>

<value>true</value>

</constructor-arg>

</bean>

<bean

id=”OrderServiceTarget”

class=”com.infosys.j2ee.radien.demo.order.service.OrderServiceImpl”

>

<property name=”serviceConfig”><ref bean=”OrderServiceConfig”/></

13September 2005JDJ.SYS-CON.com

property>

</bean>

<bean

id=”OrderService”

class=”org.springframework.transaction.interceptor.TransactionProxy

FactoryBean”

>

<property name=”target”><ref bean=”OrderServiceTarget”/></property>

<property name=”transactionManager”><ref bean=”transactionManager”/

></property>

<property name=”transactionAttributes”>

<props>

<prop key=”createOrder”>PROPAGATION_REQUIRED</prop>

</props>

</property>

</bean>

<!-- End design time configuration. -->

<!-- Begin runtime configuration. -->

<bean id=”OrderServiceConfig”

class=”com.infosys.j2ee.radien.demo.order.service.

OrderServiceConfig”>

<property name=”param1” value=”value1”/>

Listing 3

/*

* Generated file - Do not edit!

*/

package com.infosys.j2ee.radien.demo.order.service.ejb;

import javax.ejb.*;

import com.infosys.j2ee.radien.core.Service;

import com.infosys.j2ee.radien.core.ServiceLocator;

import com.infosys.j2ee.radien.spring.AbstractStatelessSessionBean;

import com.infosys.j2ee.radien.demo.order.service.OrderService;

/**

* Service interface.

* @radien-generated at 27-05-05

* @copyright Infosys Technologies Ltd

* @author Radien

* @version ${version}

*

* @weblogic.pool initial-beans-in-free-pool=”1” max-beans-in-free-

pool=”3”

*

* @ejb.bean name=”OrderService”

* description=”A session bean named OrderService”

* display-name=”OrderService”

* type=”Stateless”

* view-type=”both”

* jndi-name=”ejb/OrderService”

* local-jndi-name=”ejb/OrderServiceLocal”

* local-business-interface=”com.infosys.j2ee.radien.demo.order.ser-

vice.OrderService”

* impl-class-name=”com.infosys.j2ee.radien.demo.order.service.ejb.

OrderServiceBean”

*

* @ejb.transaction-type type=”Container”

* @ejb.transaction type=”Required”

*

* @ejb.home extends=”javax.ejb.EJBHome” local-extends =”javax.ejb.

EJBLocalHome”

* @ejb.interface extends=”javax.ejb.EJBObject” local-extends

=”javax.ejb.EJBLocalObject”

*

*/

public class OrderServiceBean extends AbstractStatelessSessionBean

{

OrderService _myRadienServiceImpl;

public static final String SERVICE_NAME=”POJO-OrderService”;

/**

* Obtain our POJO service object from the Service Registry

* @see com.infosys.radien.spring.AbstractStatelessSessionBean#onEj

bCreate()

*/

 Here’s the list of some of the training events to consider for Java develop-
ers and architects:
• JavaOne: http://java.sun.com/javaone
• WebServices Edge: http://webservicesedge.sys-con.com
• O’Reilly Open Source Convention: http://conferences.oreillynet.com/

os2005
• Weekend With Experts: http://www.weekendwithexperts.com
• No Fluff Just Stuff: http://www.nofluffjuststuff.com
• Eclipse World: http://www.eclipseworld.net
• OOPSLA: http://www.oopsla.org
• JavaPro Live: http://www.ftponline.com/conferences/javaprolive

• JavaPolis, Europe: http://www.javapolis.com
• Colorado Software Summit: http://www.softwaresummit.com

 Pick a conference and remind your boss about all those long hours
you’ve spent on the project. You need and deserve quality Java training! In
some cases your company can even invite the entire seminar to your town.
 Recently I’ve asked a couple of seasoned Java programmers what the
acronyms AJAX, AOP, and JBI mean. They didn’t know. How about you?
Ask your colleagues the same question and see for yourself. There are
plenty of great programmers who just write Java code for their employer
day in and day out. Raise your head and look around. The Java community
is exciting and vibrant and something is happening all the time. Be a part
of it.

Corporate Java Training
–continued from page 6

JDJ.SYS-CON.com14 September 2005

age navigation requirements become more demanding as
Web applications get bigger and more complex. Hard-
coded page flow rules make applications less resilient to
changes. In this scenario, reusing business logic is one

aspect and reusing page flow becomes another aspect. Especially
in situations that demand a wizard-kind behavior, it’s essential to
capture application page flow logic in a declarative fashion.
 Spring Web Flow (SWF) is a powerful framework for implement-
ing page flows in a Web application. Even though SWF is part
of the Spring Web application development suite that includes
Spring MVC, its flexible architecture allows it to be used with any
presentation tier Web framework including Apache Struts and JSF.
SWF is now available as a development-ready PR 3.0 version and is
expected to be part of Spring 1.3.
 In this article, we’ll explore the features of SWF and use it to
build a sample page flow scenario.

Spring Web Flow in Action
 In SWF, every flow is a Finite State Machine (FSM). It consists
of states and transitions. A state represents the execution of some
actions (business logic) or a view that’s displayed to the user for user
input.
 When the FSM starts, the flow enters the start state (a state that’s
specially marked as start state). A state can be an action state or a
view state (SWF has other state types too like decision state, sub-flow
state, and end state). Both action states and view states can define
one or more transitions from them to a target state. An event triggers
a transition from one state and moves the flow to the new state.
 When an action state is entered, the flow executes one or more
configured action objects for that state. The execution of an action
can produce a logical result in the form of an event and it’s processed
to select a suitable transition. This transition is applied (executed)
and as a result the flow enters the next state as defined by this
transition.
 When a view state is entered, the flow is temporarily paused and
a view, as configured for that state, is displayed to the user. When
the flow receives an event (user input can be encapsulated as an
event) from the user, it resumes execution and processes the event to
transition to the next state.
 This new state is then processed in the same way and so on. The
flow continues to execute until it reaches the end state (specially
marked as end state) where the flow is terminated and a view (as
configured for the end state) is displayed to the user. Figure 1 depicts
how states are processed in FSM.

Flow Builders
 SWF can build a flow definition consisting of states and transi-
tions from an XML configuration file. Since SWF implements the
classic GoF Builder design pattern, it provides the flexibility to
define and use custom flow building logic. Figure 2 shows the flow
builder class diagram.
 SWF has many FlowBuilder implementations. The XMLFlow-
Builder is one of them that can build a flow from an XML
configuration file.
 The FlowFactoryBean class internally uses a FlowBuilder
implementation and acts as an assembler for creating a
Flow.

FlowBuilder builder = …

Flow flow = new FlowFactoryBean(builder).getFlow();

 The XMLFlowFactoryBean implementation uses the XMLFlow-
Builder to create a flow. In a Spring container, you can configure
an XMLFlowFactoryBean as shown below and use it to build a
flow:

<bean id=”aFlow” class=”org.springframework.web.flow.config.

XMLFlowFactoryBean”>

 <property name=”location” value=”classpath:myflow.xml” />

</bean>

BeanFactory factory = ….

Flow flow = (Flow)factory.getBean(“aFlow”);

 [Spring recognizes the defined bean as a ‘factory bean’ and in-
vokes its getObject() method, which in turn invokes the getFlow()
method to create and return a flow.]
 You can also create a flow by sub-classing the AbstractFlow-
Builder class as shown below. This class defines many helper
methods like addViewState() and addActionState() to define the
flow at runtime.

public class AFlowBuilder extends AbstractFlowBuilder {

 protected String flowId() {return “aFlow”;}

 public void buildStates() {

 addViewState(“stateId”,”viewName”,transition);

 addActionState(“stateId”, targetAction, transition);

 …

 }

}

Kishore Kumar works

as a Java architect at

 U.S. Technology

 (www.ustri.com).

He specializes

 in J2EE applications.

kishore_kumar@usswi.com

by Kishore Kumar

P

The promise of handling complex page
 navigations in any Web application

Feature

������������������������������
����������������������������������
������������������������������������

����������������������������
���������������������������������
�����������������

��
���

�����������������������������������
����������������������

����������������������������������
�������������������

��

�

�

��

�
���

� �
������������������������

�����������������������������

�

��

��������������������

�

�������������������������������

���
���

�
�

�

������������������������������
����������������������������������
������������������������������������

����������������������������
���������������������������������
�����������������

��
���

�����������������������������������
����������������������

����������������������������������
�������������������

��

�

�

��

�
���

� �
������������������������

�����������������������������

�

��

��������������������

�

�������������������������������

���
���

�
�

�

JDJ.SYS-CON.com16 September 2005

Feature

 A flow builder internally uses a FlowServiceLocator to create all flow
elements including a Flow, a State, and a Transition. The BeanFactory-
FlowServiceLocator implementation uses Spring’s bean factory to look
up and create flow elements. By default the XMLFlowBuilder uses the
BeanFactoryFlowServiceLocator.
 The XMLFlowBuilder allows a flow element (flow/state /transition,
etc.) to have the common optional properties bean, classref, class, and
autowire. If a ‘bean’ or ‘classref’ property is provided the XMLFlowBuilder
uses this value for resolving the bean reference using Spring. Otherwise,
if a “class” property is given, a new element of the given type is created
using reflection. The ‘autowire’ property denotes whether to use Spring’s
autowire (the ability to automatically apply dependency injection) capa-
bility or not.

A Sample Scenario – Shopping Cart Checkout
 Let’s discuss a simple scenario where a user uses a Web wizard to
check out items in his shopping cart that he wants to buy. Figure 3
shows this scenario.
Step 1: Create an XML Web flow definition (checkoutFlow.xml) as
 shown in Listing 1.
Step 2: Create an XML flow factory bean entry in Spring’s context XML
 configuration file as shown in Listing 2.
Step 3: Execute the flow. See Listing 3.

 A FlowExecutionManager is a controller façade to the Spring Web
Flow system. On receiving an event, it loads the flow defined by the

‘_flowId’ parameter using Spring’s bean factory (using XMLFlowFacto-
ryBean). Then, it looks for an event parameter ‘_flowExecutionId’ and if
it isn’t present, it will create a new FlowExecution instance and uses it to
start this new flow. A FlowExecution encapsulates the execution state of
a flow. Otherwise, the flow execution manager loads the existing flow ex-
ecution instance from its storage (in our case this is HTTP Session-based
storage) and uses it to continue execution. Figure 4 depicts this as a UML
sequence diagram.
 [Spring provides standard controllers to integrate with Spring MVC
and struts framework. The controller servlet shown in Figure 4 and
Figure 5 shows the logic that goes into these controllers.]
 Let’s look at each state in our sample checkout flow.
 The ‘viewShoppingCart’ is a view state (it’s also the start state). When
the flow enters a view state, it triggers the rendering of a view. The view
name defined by the ‘view’ attribute of any view state is a logical name
that needs to be mapped to a physical view. In Spring MVC a ViewRe-
solver and in struts an ActionForward can do this mapping. When the
flow execution enters the ‘viewShoppingCart’ state, the flow execution
suspends the active flow and returns a ViewDescriptor that represents a
logical view ‘sc.view.’ A controller servlet can now map this logical view
to a JSP (or any other view type) and forward the request to that JSP to
render the view.
 Once the user selects ‘next’ on the view shopping cart page, the con-
troller servlet uses the flow execution manager to resume the flow execu-
tion. The flow execution manager requires the following parameters to
continue flow execution:
• flowExecutionId – denotes the current flow execution state.

[Required]
• currentStateId – denotes the current state. [Optional – required only

to support browser back button usage]
• eventId – denotes the generated event. [Required]

 The flow execution manager can be triggered to resume flow execu-
tion as show below:

//Lookup flow execution manager from springʼs context

FlowExecutionManager mgr = …

Map params = new HashMap();

// copy all request parameters to params HashMap

Event event= new Event(source, eventId, params);

ViewDescriptor vd = mgr.onEvent(event);

…

 Figure 5 depicts this as a sequence diagram.
 The flow execution manager loads the flow execution from the stor-
age and uses it to process the event. The flow execution instance will
apply the event on the known current state (the supplied current state
will override this), which will result in a transition to a new state.
 In our case, the current state is ‘viewShoppingCart’ and the ‘_eventId’
value is ‘next.’ Since there’s a transition defined for this criterion, it’s
executed and the flow execution enters the target state ‘viewShipping-
Address.’ This will display the shipping address page to the user. Had
the ‘_eventId’ value been ‘cancel’ it would have resulted in entering the
‘cancelFlow’ state.
 If the user now inputs the shipping details and selects ‘next,’ it should
take the flow to the ‘bindAndValidateSA’ state, which is an action state.
An action state executes one or more implementations of the ‘Action’
interface when entered. A typical action can act as a bridge between
the presentation tier and the business tier or even execute the business
logic directly (not a good practice).

 Figure 1 Activity diagram showing how states are processed in SWF

next state = start action

Activate flow

Enter Action State
Enter View State

Suspend Flow
Execute Action

State
Process Events

Find Transition defined for Event

Execute Target Transition
next state = transition >target state

Display Configured View

End State

Terminate Flow

Display Configured View

[state type = action state]

[No events] [Events?]

[Events?]

[state type = view state]

[state type = end state]

User Input can be
encapsulated to
create an event

[has actions?]

 Figure 2 Flow builder class diagram

<<interface>>
FlowBuilder

+init() :
+buildStates()
+getResult() :
=dispose()

+getFlow()

...

+createFlow()
+getFlow()
+createState()
+getState()

<<interface>>
FlowServiceLocator

FlowFactoryBean

XMLFlowFactoryBean

BeanFactoryFlowServiceLocator

XMLFlowBuilder

BaseFlowBuilder
<<abstract>>

17September 2005JDJ.SYS-CON.com

 The SWF supplies a ready-made ‘action’ implementation ‘FormAc-
tion’ for binding form parameters to a POJO bean. The ‘FormAction’
class extends from ‘MultiAction,’ which gives it the ability to dispatch a
given method at runtime. The method to be executed can be specified
using a ‘method’ attribute to an ‘action’ in the Web flow configuration.
 In our example, we haven’t specified a ‘method’ attribute and
hence the default behavior is to execute a method with the same
name as the state id, which is ‘bindAndValidate.’ The default imple-
mentation of the method ‘bindAndValidate’ in ‘FormAction’ dynami-
cally binds the event parameter values to a POJO form bean, validates
the bean if a ‘validator’ is specified, and finally places the form bean in
the specified scope (flow scope or request scope).
 In the checkout flow definition, the ‘bindAndValidateSA’ state has
an action configured with a bean property of ‘checkout.shippingAd-
dress.’ This is resolved using Spring’s context XML.

<bean id=”checkout.shippingAddress” class=”org.springframework.web.flow.

action.FormAction”>

 <property name=”formObjectName” value=”shippingAddress”/>

 <property name=”formObjectClass” value=”checkout.beans.ShippingAddress” />

 < property name=”formObjectScopeAsString” value=”flow” />

</bean>

 This form action uses the POJO ‘checkout.beans.shippingAddress’
and puts it in flow scope after binding the event parameter values. When
this action completes execution, it signals a ‘success’ event. This ‘success’
event selects the transition that takes the flow to the ‘viewBillingAddress’
state. The flow then continues to execute this new state and so on.
 When the flow enters an end state, it terminates the flow and dis-
plays the configured view.

<end-state id=”finishCheckout” view=”homePage” />

Sub Flows
 Spring Web Flow also supports sub-flows. A sub-flow is a logically
separate but complete flow in itself. It’s similar to a subroutine in a
procedural language. SWF has a separate state to denote a sub-flow. A
sub-flow state can also refer to a flow defined in another flow definition
file.

<subflow-state id=”lookupPreviousShippingDetails” flow=”shippingDetailsLook

upFlow”>

 <attribute-mapper >

 <input name=”customerId”/>

 <output name=”shippingAddress”>

 </attribute-mapper>

 <transition on = ”success” to = ”viewShippingAddress”>

</subflow-state>

 At any given time the FlowExecution manages a stack of flow ses-
sions. A flow session is a placeholder for flow variables and flow
state. Action implementations can access the flow-scoped param-
eters using the RequestContext interface. When the flow execution
enters a sub-flow state, the flow execution creates a new flow session
and adds it as the top item in the flow session stack. This session
remains as the active session until the sub-flow completes execution
and the flow execution activates its parent flow session. A parent
flow can pass its flow session parameters to the newly spawned sub-
flow using an attribute mapping as shown in the above configura-
tion. An input element can map a flow-scoped parameter in the

parent flow and copy it to the sub- flow session. Similarly, an output
element copies the parameter value from the sub-flow back to the
parent flow when the flow completes.
 An attribute mapper configuration can optionally reference a
FlowAttributeMapper implementation defined in Spring’s context
using the ‘bean’ element attribute. In this case the input and output
elements aren’t necessary. If no flow attribute mapper implementa-
tion is referenced, SWF will use a default implementation
 ParameterizableFlowAttributeMapper uses the input and output
element mappings to do the attribute mapping.

Integration with Struts
 SWF provides a FlowAction class, which is a struts action class
that can act as the front controller entry point into the Web flow
system. Typically, a single parameterized (by flow id) FlowAction can
manage all flow executions. The FlowAction delegates every request
to a FlowExecutionManager. This class is also aware of a BindingAc-
tionForm adapter that adapts Spring’s binding facility to the struts
action form model. A flow action can be configured as shown below
in the ‘struts-config.xml’ configuration file.

<action path=”/checkout” type=”org.springframework.web.flow.struts.

FlowAction” name=”bindingActionForm” scope=”request” className=”org.

springframework.web.flow.struts.FlowActionMapping”>

<set-property property=”flowId” value=” CheckoutFlow” />

 </action>

 A struts action form with the name ‘bindingActionForm’ and the
class ‘org.springframework.web.struts.BindingActionForm’ has to be
defined in the struts-config.xml file.

 Figure 3 A sample checkout scenario

View Shopping
Cart

Get Shipping
Address

Get Billing
Address

Show
Confirmation

Cancel

Checkout

Show
Success Page

[next] [next] [next]

[cancel]

[cancel]
[cancel]

[back] [back] [back]

[ok]

[done]

[success]

[checkout][cancel]

 Figure 4 Flow execution sequence diagram with no flow execution id parameter

FlowExecutionManager

Sends the Following parameters
{_eventId, _flowId, _currentStateId, _flowExecutionId}

[if FlowExecutionId not present]

1 : service() 2 : createEvent()

3 : onEvent(event)
4 : new()

8 : return ViewDescriptor

9 : resolveView(View Descriptor)

7 : store (flow execution)

FlowExecutionStorageBrowser View : JSP

FlowExecution

Controller Servlet

10 : forward()

6 : return ViewDescriptor

5 : start(event)

JDJ.SYS-CON.com18 September 2005

 The FlowAction controller maps all logical view names returned
from a view state and end state as action forward mappings (typi-
cally global forwards) in the struts configuration.
 The use of Spring’s binding-aware action form requires some
additional struts configuration. A custom binding action-aware
request processor is required to defer the form population.

<controller processorClass=”org.springframework.web.struts.BindingRequestP

rocessor”/>

 A binding plug-in is also needed to plug in an errors-aware
jakarta-commons-beanutils adapter:

<plug-in className=”org.springframework.web.struts.BindingPlugin”/>

Integration with Spring MVC
 SWF has a very natural integration with the Spring MVC frame-
work. It provides a Spring FlowController class that can act as a front
controller for executing Web flows. A single FlowController instance
can be parameterized (using the flow id parameter) to execute dif-
ferent flows.

Making the Back Button Work
 A page flow system like SWF uses server-side state management
to direct page navigation. This can easily conflict with browser back
button use. The easiest way to tackle this is to not use the browser
back button.
 However, if required you can support browser back button func-
tionality by sending the current state id (_currentStateId) explicitly
with every request to the flow controller. This way the FlowExecution
will know which state to use and result in correct navigation even
when the back button is used.

<form name=”someForm” action=”checkout”>

 <input type=”hidden” name=”_flowId” value=”<%=request.getAttribu

te(“flowId”)%>”>

 <input type=”hidden” name=”_currentStateId” value=”viewShipping

Address”>

 <input type=”hidden” name=”_eventId” value=”next”>

 <input type=”hidden” name=” _flowExecutionId” value=”<%request.

getAttribute(“flowExecutionId”)%>”>

….

 However, this approach won’t work if there are sub-flows. In this
case, there’s still confusion as to what flow (sub-flow or its parent
flow) should be used. SWF provides a continuation-based approach
to solve this problem. In SWF a continuation is a snapshot of the

flow execution state (serialized form of FlowExecution instance) at
any given point of time. To support this, an HttpSessionContinu-
ationFlowExecutionStorage mechanism should be used instead of
the default HttpSessionFlowExecutionStorage.

<action path=”/checkout” type=”org.springframework.web.flow.struts.

FlowAction” name=”bindingActionForm” scope=”request” className=”org.

springframework.web.flow.struts.FlowActionMapping”>

<set-property property=”flowId” value=” CheckoutFlow” />

<set-property property=”storage” value=”sessionContinuation”>

 </action>

 This way, for every request, a serialized form of the current
FlowExecution instance is stored in the HTTP session (under a
separate flow execution id attribute). For a new client request (with
the flow execution id parameter), the FlowExecutionManager will
de-serialize the saved FlowExecution instance and uses it to process
the event. Hence, every request will be processed using the correct
context.

Conclusion
 Spring Web Flow is a very powerful and elegant Web flow solution.
It’s definitely a promise for handling complex page navigations in
any Web application.

References
• Spring Framework: http://www.springframework.org
• Spring Web Flow: http://opensource.atlassian.com/confluence/

spring/display/WEBFLOW/home
• Ervacon: http://www.ervacon.com/products/springwebflow

Feature

 Figure 5 Flow Execution sequence diagram when a flow execution id is provided

1 : onEvent(event)

FlowExecutionStorage FlowExecutionController Servlet FlowExecutionManager

[if FlowExecutionId present]

[resolve view and forward
to view]

6 : store (flow execution)

3 : return flow execution

7 : return View Descriptor

2 : load(flowExecutionId)

4 : signalEvent(event)

5 : return ViewDescriptor

Listing 1
<webflow id=”checkout” start-state=” viewShoppingCart”>
 <view-state id=”viewShoppingCart” view=”sc.view”>
 <transition on=”next” to=” viewShippingAddress” />
 <transition on=”cancel” to=” cancelFlow” />
 <view-state>
 <view-state id=”viewShippingAddress” view=”sa.view”>
 <transition on=”next” to=”bindAndValidateSA” />
 <transition on=”back” to=” viewShoppingCart” />
 <transition on=”cancel” to=” cancelFlow” />
 <view-state>
 <action-state id=”bindAndValidateSA”>
 <action bean=”checkout.shippingAddress” />
 <transition on=”success” to=” viewBillingAddress” />
 <transition on=”error” to=” viewShippingAddress” />
 <action-state>
…………..
</webflow>

Listing 2
<bean id=”CheckoutFlow” class=”org.springframework.web.flow.con-
fig.XMLFlowFactoryBean”>

 <property name=”location” value=”classpath:checkoutFlow.xml”
/>
</bean>

Listing 3
BeanFactory factory = …
FlowExecutionManager mgr = (FlowExecutionManager)factory.
getBean(“mgrID”);
//This assumes that a Flow Execution Manager is defined in
springʼs configuration file
mgr.setStorage(new HttpSessionFlowExecutionStorage());
//Use HTTP session to store flow execution state
Map parameters = new HashMap();
parameters.put(“_flowId”, “CheckoutFlow”);
Event event = new Event(source, eventId, parameters);
ViewDescriptor vd = mgr.onEvent(event);
…

SUPERCHARGE

YOUR APPS WITH

THE POWER OF

LOCATION

INTELLIGENCE

Contact us at sales@mapinfo.com

Try it and see for yourself. Visit www.mapinfo.com/sdk
Learn more about the MapInfo Location Platform for Java,
access whitepapers and download free SDKs.

Create applications for:
• Web-based store location finders • Visualizing where your customers are
• Analyzing where revenue comes from – and where it doesn’t • Managing assets such as cell towers, vehicles and ATMs

100% Java SDK enables Location
Intelligence through web services

Create desktop & web UIs using
Swing, JSP and JSF Components

Integration with Eclipse, NetBeans,
IntelliJ and more

SUPERCHARGE

YOUR APPS WITH

THE POWER OF

LOCATION

INTELLIGENCE

Contact us at sales@mapinfo.com

Try it and see for yourself. Visit www.mapinfo.com/sdk
Learn more about the MapInfo Location Platform for Java,
access whitepapers and download free SDKs.

Create applications for:
• Web-based store location finders • Visualizing where your customers are
• Analyzing where revenue comes from – and where it doesn’t • Managing assets such as cell towers, vehicles and ATMs

100% Java SDK enables Location
Intelligence through web services

Create desktop & web UIs using
Swing, JSP and JSF Components

Integration with Eclipse, NetBeans,
IntelliJ and more

JDJ.SYS-CON.com20 September 2005

e’ve all heard about the
simplicity and power of the
EJB 3.0 specification. And
because this has proven to

be true, we can’t help but think that
performance must be rather poor.
After all, all that simplicity must come
at a price.
 With this in mind, we set out to test
EJB 3.0’s performance using Oracle’s
implementation of the specification.
Although the implementation we used
is a developer preview, where the focus
is typically on product stability instead
of performance, our expectations are
that the performance will be below or
in the best case the same as previous
versions of the EJB specification.
 We thought that the best way to test
was to do a few things that developers
typically do with EJB 2.1 and then try
out the equivalent with EJB 3.0. This
would let us compare performance
rather than deal with raw numbers that
probably wouldn’t mean much. We
tested the Data Transfer Object (DTO)
design pattern, the Session façade
design pattern, and the use of the Con-
tainer Managed Relationships (CMR)
functionality of the entity beans.
 The application we used, as well as
the test harness and the methodol-
ogy, is described in J2EE Performance
Testing by Peter Zadrozny (Expert
Press, 2002). The harness is a simple
dispatcher servlet that executes each
discrete test case based on the JazzCat
application, a catalog of jazz record-
ings. The database schema includes
tables for bands, musicians, instru-
ments, tracks, and albums. The ap-
plication also handles the storage and
retrieval sessions recording and takes
of a track.
 Our test environment was based on
Oracle Application Server EJB 3.0 Pre-
view (Developer Preview 3), and Sun
Java HotSpot Client VM (build 1.5.0_03-
b07, mixed mode, sharing). We used
Oracle Database 10g Enterprise Edition
Release 10.1.0.2.0. We used the default
settings on all of the software.

 The users were simulated with The
Grinder 3.0 Beta 25 (http://grinder.
sf.net), with a sample size of 5,000
milliseconds. Each test run lasted eight
minutes; we ignored the first three
minutes to allow the test to stabilize.
Each simulated user ran a test script
that called the corresponding test case
10 times. The test scripts were executed
continuously in a sequential fashion for
the duration of the test run. Two things
are worth noting: there was a separate
HTTP session for each execution of the
test scripts, and there was no sleep time
between each call to the test case. The
latter was done to create a highly stress-
ful situation so we could see how EJB 3.0
behaved when pushed to its limits.
 To get a complete picture of the
performance, we used two key indica-
tors: Aggregate Average Response Time
(AART), to reflect the end user perspec-
tive, and Total Transactional Rate (TTR)
or throughput, to reflect the load on
the systems involved.
 We used three Dell PowerEdge 2850
computers with dual Intel Xeon (HT)
at 3.4GHz with 4GB of memory, run-
ning Microsoft Windows Server 2003,
Standard Edition. We used one of the
computers to generate the load with
The Grinder, another to run Oracle
Containers for J2EE (OC4J), and the last
to run the database. All three were con-
nected to a switched network in which
the only traffic was generated by the
tests themselves.

Data Transfer Object
 Using JazzCat application to test
the DTO design pattern, we created
a servlet that lists all the albums in
our test database via an entity bean,
where each row in the listing shows
the field values of the album entity.
We started the EJB 2.1 test by pro-
gramming this functionality without
using DTO. In this case, which we
called “DTOOff”, our test servlet
would retrieve a list of all the album
entities, and then get the individual
field values for each entity via the
entity’s accessor methods.
 Using the DTO design pattern, our
test servlet, called “DTOOn”, makes
a single method call (getData). The
entity bean constructs a correspond-
ing DTO, loads it with the entity’s field
values, and returns the object to the
servlet. Now the servlet can access the
fields on the local object.
 In EJB 3, the entity beans have been
replaced by Plain Old Java Objects
(POJOs) and all the traditional CRUD
and query operations are performed
with the Entity Manager (EM). Queries
can be defined as standalone named
queries, which are predefined in the
bean class, or dynamic queries that
can be constructed using the query
method.
 In the JazzCat application, the dis-
patch servlet of the test harness calls
the corresponding test servlet, which
in turn looks up the entity manager.

Testing

by Peter Zadrozny and
Raghu Kodali

The Performance of EJB 3.0

W

Peter Zadrozny is vice president

and chief evangelist for Oracle

Application Server. Previous

to this, he was the chief

technologist of BEA Systems for

Europe, Middle East, and Africa.

He held this role since starting

WebLogic Inc.’s operations in

Europe in 1998. Prior to his posi-

tion at BEA, Peter held various

executive and technical roles

in many countries around the

world for companies such

as Macromedia, McKesson,

Electronic Data Systems,

Petroleos de Venezuela and

Sun Microsystems, for whom he

started their operations

in Mexico.

The simplicity and power

 Figure 1

Total Transactional Rate
Data Transfer Object

300

250

200

150

100

50

0

EJB 2.1 – DTO On

EJB 2.1 – DTO Off

EJB 3.0

15
 U

se
rs

25
 U

se
rs

50
 U

se
rs

10
0 U

se
rs

15
0 U

se
rs

20
0 U

se
rs

25
0 U

se
rs

Re
qu

es
ts

 p
er

 S
ec

on
d

21September 2005JDJ.SYS-CON.com

The entity manager then executes the
named query that was defined for the
Albums class. Here’s the definition of
this class and the named query:

@Entity

@Table(name=”ALBUMS”)

@NamedQuery(name=”findAll”,queryString=”Sele

ct object(a) from Albums a”)

public class Albums {

//……

}

 Once the named query returns the
list of all the albums, it’s then printed
out as an HTML table using the getter
methods of Albums POJO.
 We ran the tests with 15, 25, 50,
100, 150, 200, and 250 simultaneous
users and we found that in both cases,
response time and throughput, the
difference between EJB 2.1 using DTO
and EJB 3.0 was within 4%. This is
within the margin of error, so for all
practical purposes the performance
is similar. To give you an idea of the
actual performance, with 250 simul-
taneous users the average aggregate
response time was 1,100 milliseconds
and the throughput was an average
225 requests per second. This is very
impressive, especially since there was
no sleep time in the test scripts.
 The DTOOff test case produced
an AART 28% higher than DTOOn
and EJB 3, and a TTR that was 19%
lower. This is because each call to an

accessor method on the entity bean
is a transaction by itself, whereas us-
ing DTO and EJB 3, there is only one
transaction. Remember to demarcate
your transactions correctly to get bet-
ter performance.
 It’s interesting to note the through-
put curves for each case (see Fig-
ure 1). Remember that the TTR or
throughput is a measure of system
capacity as a whole (application, JVM,
database, OS, hardware). The curves
start by going upward, which shows
the system is handling the capacity as
the requests increase. Then they reach
a point of stability where the system
has reached its limit and the response
time starts to increase dramatically.
Finally, when the curves begin to fall,
this is where the system can’t handle
any more load and things start going
downhill. In this chart you can see
that in all cases, the peak has been
reached at 50 simultaneous users;
however, on the DTOOff case perfor-
mance goes downhill at 150 users,
whereas EJB 3 and DTOOn hold on
longer before going down. Interest-
ingly, EJB 3 holds on a little longer
by presenting 12% better throughput
than DTOOn with 250 users. This is
likewise for the response time, where
EJB 3 has 13% better number than
DTOOn with 250 users. You can say
that under heavy loads, EJB 3.0 tends
to perform better than EJB 2.1, at least
in this test case.

Session Façade
 To test this design pattern we
searched JazzCat catalog for albums
containing a particular song title or a
substring of it. This was an interesting
case, as we had to call a few entities to
provide this listing: Album (the item we
are searching for), Take (holds the song
title), Track (identifies occurrences of
Takes on Albums), and Musician (iden-
tifies the artist name for an Album).
 This is straightforward with EJB
2.1. The dispatcher servlet of the test
harness calls the FacadeOn servlet,
which in turn calls the stateless session
bean that acts as the façade and calls
all the necessary entities to obtain the
required information. This is later sent
back to the FacadeOn servlet in the
form of a Data Transfer Hash Map and
presented to the user.
 EJB 3.0 works pretty much the same
until you get to the point of calling
the entity beans. Instead, we call the
Entity Manager and, using named
queries, we load the information from
the POJOs into the Data Transfer Hash
Map. The main difference is that with
EJB 2.1, we look up the entity beans
using ejb-local-refs and then work on
these entity beans to get the required
information.
 We conducted these tests with 15,
25, 50, 75, and 100 simultaneous users.
The test script did 10 different searches
starting with the letter a to the letter j.
To our surprise, we found that EJB 3.0
had roughly double the performance of
EJB 2.1. Let’s look at the response time
in Figure 2. We can see that as the load
increases, the difference in response
time increases dramatically, from 18%
for 15 users all the way up to 58% for 100
users, giving an overall average of 46%.
 Even more interesting is the TTR
chart in Figure 3, which clearly shows
the throughput for EJB 2.1 Session
Façade more or less stable for all user
loads, but decreasing very slowly at 25
users. In the case of EJB 3.0, it peaks
at 50 users and then begins a slow de-
scent. However, the average through-
put of EJB 3.0 is roughly double that of
EJB 2.1.

Raghu R. Kodali is a consult-

ing product manager and

SOA evangelist for Oracle

Application Server. He leads

next-generation SOA initiatives

and J2EE feature sets for

Oracle Application Server, with

particular expertise in EJB, J2EE

deployment, Web services,

and BPEL. He holds a master’s

degree in computer science

and is a frequent speaker

at technology conferences.

Raghu maintains an active

blog at Loosely Coupled

Corner (http://www.jroller.

com/page/raghukodali). Figure 2

25
 U

se
rs

50
 U

se
rs

10
0 U

se
rs

1800
1600
1400
1200
1000
800
600
400
200

0

15
 U

se
rs

75
 U

se
rs

EJB 2.1

EJB 3.0

Aggregate Average Response Time
Session Facade

M
ill

is
ec

on
ds

We thought that the best way to test was to do a few things
that developers typically do with EJB 2.1 and then try out the

equivalent with EJB 3.0”
“

JDJ.SYS-CON.com22 September 2005

 Just to provide some numbers, with
100 users the AART of EJB 3.0 is 716
milliseconds and the throughput is
140 requests per second. The wonder-
ful performance of EJB 3.0 for such a
popular design pattern is a welcome
surprise, which only makes us want to
use EJB 3.0 even more.

Container-Managed Relationships
 Although entity beans in general and
CMR in particular have a bad reputa-
tion, various EJB containers actually
have high-performance implementa-
tions. Because of this, we expected the
performance comparison would be
basically the same.
 This test case is based on a search
that exercises the relationships between
the tables of the JazzCat application.
Given a song title, or a substring of it,
to search for, the test servlet displays
a list of takes matching the title, along
with the band members playing on each
particular take of that title. Among the
many relationships and navigations that
exist in this application and this search,

a couple are worth highlighting: there’s
a one-to-many relationship between
Takes and Bands (a Take has many Band
members), and a many-to-one relation-
ship between Bands and Musicians
(several different Bands can have the
same Musician as a member).
 Compared to programming this
search using Bean Managed Persistence
Entity Beans, using Container Managed
Persistence is really easy. However, we
still have to deal with the Deployment
Descriptor, where we have to declare all
the relationships of each entity.
 In contrast, using the annotations of
EJB 3.0, we can quickly and easily de-
fine the relationships, such as the one
between Takes and Bands:

@OneToMany(targetEntity=”org.migrate.entity.

Bands”)

@JoinColumn(name=”BANDS.TAKE_ID”, referencedC

olumnName=”TAKES.ID”)

public List<Bands> getBandsList()

{

 return bandsList;

}

 The EJB 3.0 test code is very similar
to that of EJB 2.1 up to the point where
the session façade bean calls the entity
manager. Using the entity manager, we
navigate through the POJO relation-
ships using getter methods and we
assemble the information for the test
servlet to present to the user.
 The test scripts for this test case were
basically the same as those used for the
Session Façade test case: 10 searches
starting with the letter “a” up to the
letter “j”. We began with five users and
then increased to 15, 25, 50, 75, and 100
users. (We had to add the case of five
users because the throughput of EJB 2.1
peaked at 15 users.)
 The results again were pleasantly
surprising: the performance of EJB 3.0
was roughly double that of EJB 2.1. The
chart for the response time looks very
similar to that of the Session Façade test
case – the difference starts with 20% for
five users and pretty much jumps to 55%
for the rest of the user load.
 The results from the TTR standpoint
can be seen in Figure 4. Here, the
throughput of EJB 3.0 starts with a 25%
difference and quickly grows to 140%
to present an overall average of 111%
better throughput.
 If you’re interested in running your
own test cases using JazzCat applica-
tion, the test harness, and the meth-
odology we used, you can download a
package that contains everything you
need from www.jroller.com/resources/
r/raghukodali/jazzcat.jar.

Conclusion
 Considering that we used only a
developer’s preview of EJB 3.0, we’re
very impressed with this specification
– at least Oracle’s implementation of
it. As mentioned earlier, we’re very at-
tracted to the simplicity and power of
EJB 3.0. The wonderful work done with
annotations and the persistence, the
ability to use POJOs, and the ability to
test outside of the container are very
attractive all by themselves. But now,
with an implementation that equals or
doubles the performance of EJB 2.1 (at
least for our test cases), we can’t wait
for the final specification and formal
release of EJB 3.0.

Acknowledgement
 Thanks to Phil Aston for his contri-
butions with The Grinder 3.

Testing

 Figure 3

25
 U

se
rs

50
 U

se
rs

10
0 U

se
rs

15
 U

se
rs

75
 U

se
rs

0
20
40
60
80

100
120
140
160
180

EJB 2.1

EJB 3.0

Total Transactional Rate
Session Facade

Re
qu

es
ts

 p
er

 S
ec

on
d

 Figure 4

25
 U

se
rs

50
 U

se
rs

10
0 U

se
rs

15
 U

se
rs

75
 U

se
rs

Total Transactional Rate
CMR vs Getters/Setters

5 U
se

rs

EJB 2.1

EJB 3.0

70
60
50
40
30
20
10
0

Re
qu

es
ts

 p
er

 S
ec

on
d

JDJ.SYS-CON.com24 September 2005

n the first article of this series
(see http://java.sys-con.com/
read/108260.htm), I “bought” a
gas station with a convenience

store and a repair shop and started
to think about automating this small
business using various Java technolo-
gies. This time, I’m getting a crash
course on open source software.

Mentality Shift
 The most surprising thing is how
quickly my programming preferences
have changed after I left the corporate
world and started working at my gas
station. I used to easily recommend
expensive software tools, application
servers, RAID devices, grid servers,
and fiber optic connectors. Need
scalability? No problem. We’ll create
a cluster of two 8-CPU applica-
tion servers. Let’s allocate another
$100K for the server licenses for our
development, UAT, and contingency
environments… But now I’m buying
coffee beans in bulk quantities for
my convenience store trying to save
a couple of dollars. I’m wondering if
CIOs of large firms know how much
money has been spent just on unused
software licenses? Oh well, it’s none
of my business, I’ve got a customer:
“$20, regular, credit card”… Oops!
The name on the card reads Bernard
Golden.
 “Excuse me, sir! Are you by any
chance the author of the best-selling
book Succeeding with Open Source?”
 “Yes I am, but what makes me
famous at a gas station?”
 “I’m pumping gas during the day,
but I read IT books and write Java
programs in the evening. At this point
I’m trying to figure out if I can use
the open source software in my small
business. Please help.”
 Bernard kindly agreed and here’s
our conversation.

What Is Open Source Software?
Yakov: Professional programmers make
a living by developing software. On the
other hand, there is large community
of people who are willing to donate a
couple of hours here and there to add a
piece of code to an open source project
without being paid for it. Why would
they do this?
Bernard: There are a number of com-
mon reasons, and each contributor has
his or her own combination of those
reasons. First and foremost, contribu-
tors are often donating a piece of code
that makes the product work better for
them. Because the source of the product
is available, they can improve it to better
run in their environment. Contributing
it makes sense because that way their fix
becomes part of the mainstream code
base and they don’t have to reapply their
changes to each future release of the
product.
 Other contributors do so out of inter-
est in the technology – contributing al-
lows them to explore a personal interest
– and all of us benefit from their interest.
 Other contributors are developing
their skill set to enable them to obtain
a better job or set them up for more
interesting work in the future.
 What’s great about open source is it
enables all of us to benefit from those
individuals’ creativity and passion.

Yakov: In 1999, I was hired by a large
firm for a WebSphere project even
though WebLogic was more popular
back then. When I asked the manager
why they chose IBM’s application server,
he replied, “We want to be sure that
the company will be still around in 10
years.” What if the key developers of a
particular open source project lose their
interest and stop working on it?
Bernard: The truth is you don’t know if
the key developers of a particular project
will choose to remain involved with it.

It makes sense to look at the size and
quality of the development team to form
an opinion about its capability and likely
dedication to the project. That said, there
is a pretty strong ethos in the open source
community to arrange for a successor in
the project, and most (if not all) projects
with a strong community never face the
issue of developer abandonment.

Yakov: Does the term open source soft-
ware really mean free software?
Bernard: Free is an ambiguous term
in English, meaning both no cost and
complete liberty. Open source is, at base,
about liberty: liberty of use, liberty to
modify, liberty to redistribute. Nothing in
open source licenses forces the software
to be distributed at no cost; however, the
realities of unlimited distribution typi-
cally mean that software is distributed
without license fees. Of course, many
companies like Red Hat, JBoss, and Zope
distribute their open source product
with no license fee, but charge for addi-
tional services like support and training.

Yakov: I’m too busy with my custom-
ers and won’t have time to contribute
to any open source project. But I’d like
to have all these liberties at no cost for
automation of my small business. To
be honest with you, I’m also thinking
of selling some of my solutions to my
fellow gas station owners. What type of
software licenses fits my objectives?
Bernard: There is no blanket – or
should I say mechanical! – answer.
Open source licenses, broadly speak-
ing, fall into two camps: so-called
Berkeley licenses and GPL-style
licenses. Berkeley-style licenses allow
recipients of open source software to
modify and redistribute without mak-
ing the modified source code available,
while GPL-style licenses require source
availability if the modified open source
product is itself distributed.

by Yakov Fain

Dealing with
Open Source Software

I

Yakov Fain is a J2EE architect

and creator of seminars

“Weekend with Experts”

(www.weekendwithexperts.

com). He is the author of the

best-selling book The Java
Tutorial for the Real World and

an e-book Java Programming for
Kids, Parents and Grandparents.

Yakov also authored several

chapters for Java 2 Enterprise
Edition 1.4 Bible.

yakovfain@sys-con.com

Part Two

Yakov’s Gas Station

Discover the New

ILOG JViews Graphics Components
First comprehensive Java graphics toolkit for Eclipse
Full Java Server Faces (JSF) Support

Build better GUIs in less time. Exceed your application requirements.

Reduce your development time & risk. Improve user experience & value.

Advanced BPM modeling and monitoring displays, data charts, Gantt
scheduling & resource displays, network & equipment displays, network
diagrams, EMS/NMS telecom displays, custom dashboards and more.
Whatever your display needs – for desktop or Web client – JViews has
the solution.

Learn more. Test-drive an Eval. Call: 1-800-FOR-ILOG or go to:

ILOG JViews Diagrammer http://diagrammer.ilog.com
ILOG JViews Charts http://charts.ilog.com
ILOG JViews Gantt http://gantt.ilog.com
ILOG JViews Maps http://maps.ilog.com
ILOG JViews TGO http://jtgo.ilog.com

© 2005 ILOG, INC. All rights reserved. ILOG and the ILOG logotype are registered trademarks, and ILOG JViews is a trademark
of ILOG. All other brand, product, and company names are trademarks of their respective owners.

Get the
complete picture

Get the
complete picture

JDJ.SYS-CON.com26 September 2005

Yakov’s Gas Station

 Depending on whether you’re
modifying an existing open source
product or creating your own product
from scratch, and even how the product
is architected and distributed, makes
a difference about the requirements
and implications of the license. Before
doing anything, you should understand
these issues. Otherwise, you may find
that your commercial product is really
an open source product, with all that
entails. An excellent resource for this
subject is Larry Rosen’s book Open
Source Licensing: Software Freedom and
Intellectual Property Law (Prentice Hall
PTR, 2004).

Yakov: Should I be aware of any po-
tential legal risks in this area? Say, for
example, I’ve changed 10 lines of code of
some free Java component to improve its
functionality. Do I have to make these
changes available to the entire world to
avoid legal issues?
Bernard: The rule of thumb in open
source is that any changes you make
and use internally are perfectly fine. The
challenge comes if you distribute the
modified product, depending upon the
license of the original product. Again,
Rosen’s book can provide a lot of help in
this area.

Yakov: How can I assess which open
source tool is the best in a given cat-
egory, e.g., Java Web frameworks?
Bernard: It’s easy to ask around or
attend a local user group meeting and
pick attendees’ brains. You can get a
good sense of the functionality, liveli-
ness, and hospitality of the community
by monitoring the mailing lists/forums.
These methods can give you a good
informal feel for the various products.
 If you want a more formal assess-
ment, you can use the Open Source
Maturity Model (OSMM) developed by
my company. It’s a structured assess-
ment methodology for open source
products to determine their maturity
and usefulness for organizations. The
OSMM is open source, and more can
be learned at www.navicasoft.com/
OSMM.

Yakov: As everyone else, open source
developers should hate writing docu-
mentation. Besides, they don’t have any
motivation to write quality manuals.
Am I supposed to be a hacker to learn
the open source products?
Bernard: The quality and availability
of documentation for a given open
source product tends to improve in
lockstep with its overall maturity. Imma-
ture products typically have incomplete
and/or poorly written documentation,
while more mature products benefit
from a larger user community, some
of whom write and contribute docu-
mentation. Of course, the very best
established open source products have
user communities large enough to at-
tract the attention of commercial
publishers. It’s often the case that you
need to be very technically sophisti-
cated to use immature open source
products due to the paucity of quality
documentation.

Yakov: The Internet is also free, but
there are plenty of firms that offer
paid services such as Internet-related
training and support. Since the open
source products become widely used,
most likely a new breed of startups will
appear to offer training and support of
popular open source tools.
Bernard: Just as the quality and avail-
ability of documentation improves as
the maturity of an open source product
improves, so to does the availability of
product-oriented services. Both docu-
mentation and services are assessed as
part of the OSMM; in addition, support,
training, and product integration go
into the OSMM assessment process. All
are vital for mainstream use of an open
source product.

Yakov: I remember that during the dot-
com era, small companies were raising
money from investors by showing them
a business plan and promising a bright
future. Don’t you feel that we can expect
a similar trend in the open source arena?
If a company has created a piece of a
free software and can show that it’s been
downloaded several thousand times,

they can raise capital by promising sales
of support and training in the future.
Bernard: I work a lot with open source
startups, and it’s true that there’s a lot of
venture activity in open source today.
Number of downloads is one metric
investors look at as part of their com-
pany assessment, but they also evaluate
the founder(s), the importance of the
software in terms of the typical use sce-
narios, as well as the potential business
model of the company.
 One advantage from the user perspec-
tive is that open source breaks the linkage
between product and company. If the
product is useful but the company is
unsuccessful, open source means that
the user community will still have ac-
cess to the product source base and can
continue using the product even if the
company goes bust. This is very different
from the dot-com days, when companies
would shut down and leave their users in
the lurch.

Yakov: I’m the only person here who will
make all decisions, deal with the vendors,
and develop the applications for my
business. Do you see it as an advantage or
disadvantage when it comes to imple-
mentation of the open source products?
Bernard: Well, you’ll be in control of the
all the decisions, but you’ll carry a lot of
responsibility. Because you’re on your
own, you should focus on open source
products with large and active commu-
nities so that you’ll have resources to call
upon when you face challenges.

Yakov: Bernard, thank you for this
improvised open source training! From
now on, if I’ll get anything at no cost,
I’ll call it an open source deal. I wish
my suppliers could offer me some open
source gasoline…
Bernard: Good luck!

• • •
 I really appreciate all your comments
to my previous gas station column post-
ed online. Please share your thoughts
on the use of the open source software
in a small business at the online version
of this article at http://java.sys-con.
com/read/124664.htm.

Open source is, at base, about liberty:
liberty of use, liberty to modify, liberty to redistribute”“

JDJ.SYS-CON.com28 September 2005

rowser-based applications are widely used and we
like the fact that we can access them from anywhere.
But from the users’ perspective, the productivity level
of Web applications still doesn’t approximate the

productivity of desktop programs. The good news is the gap is
closing: the accumulated potential of multiple technologies has
boosted a whole new breed of HTML-based apps that are as
powerful as the desktop ones. Meet AJAX.

What Is AJAX?
 The name stands for Asynchronous JavaScript + XML-
HTTPRequest and means you can establish socket communi-
cation between browser-based JavaScript and the server. AJAX
isn’t a new technology. It’s a successful branding of possibili-
ties implanted in several technologies available in modern
browsers. All AJAX applications deliver a rich UI via extensive
JavaScript manipulation of the HTML Document Object Model
based on the precision-pointed data retrieval via XMLHttpRe-
quest. Typical examples of AJAX applications are Google Maps
and Google Suggest from Google Labs (http://labs.google.com).
These applications actively monitor user input and provide
real-time page updates. Most importantly, this happens with-
out a page refresh while the user navigates through the map or
types a search string.
 In fact, the technologies behind these wonders have been
around for a while, although they require sophisticated skills in
using browser-specifi c tricks. Proprietary offerings with similar
capabilities – Macromedia Flash plug-in, Java Applets or .NET
runtime – have been available for quite some time too. The idea
of integrating a scriptable transport component talking to the
server into the browser was pioneered by IE 5.0. Then Firefox
and other popular browsers joined the club of browsers in
supporting XMLHTTPRequest as a built-in object. With cross-
browser availability, these technologies gained visibility and
in March of 2004 a company called Adaptive Path introduced
AJAX.
 In short, backing from Google and having the right browser
technologies available out-of-the-box tipped the scale: these
days everyone is adding client-side technologies to Web ap-
plications for a “better user experience.”

AJAX vs. Classical Applications
 A classic Web application model is literally a triumph of form
over substance: users are forced to submit forms in exchange

for pages. That said, the form submission and page delivery
aren’t guaranteed: worse case the user clicks again though
some pages specifi cally warn against that. It’s quite different
with AJAX, where the data travels across the wire instead of
entire HTML pages. This data exchange is scripted via a specifi c
browser object – XMLHttpRequest; the appropriate logic
handles the outcome of each data request, the specifc region
of the page is updated instead of the entire page. The results
are more speed, less traffi c, and better control of information
delivery.
 Traditional “click-refresh” Web applications force users to
interrupt the work process while waiting for the page to reload.
With AJAX, a client-side script can asynchronously talk to the
server while the user keeps entering data. Besides being trans-
parent to the user, such asynchrony means more time for the
server to process the request.
 Classic Web applications delegate all processing to the server
and force the server to manage the state. AJAX allows fl exible
partitioning of the application logic and state management
between the client and the server. This eliminates a “click-re-
fresh” dependancy and provides better server scalability. When
the state is stored on the client-side you don’t have to maintain
sessions across the servers or save/expire state: the lifespan is
defi ned by client.

AJAX: Distributed MVC
 Although AJAX applications rely on JavaScript for the presen-
tation layer, the processing power and knowledge base remain
on the server. For that matter, AJAX applications talk heavily to
J2EE servers, feeding data to and from Web Services and serv-
lets. The difference between J2EE applications with an AJAX-
based presentation tier and standard J2EE application is that in
the fi rst case MVC is distributed over the wire. With AJAX, View
is local, while Model and Controller are distributed giving the
developer the fl exibility to decide which components will be
client-based. Specifi cally, a local View renders graphics by ma-
nipulating with HTML DOM; the controller handles user input
locally and at the developer’s discretion extends the processing
to the server via HTTP requests (Web Services, XML/RPC or
others); the remote part of the Model is downloaded as needed
to the client achieving in-place real-time updates of the client
page; and state is collected on the client.
 In future AJAX articles we’ll talk about each of these compo-
nents in depth and provide examples of how they came to play

Victor Rasputnis is an IT

consultant who has been

working in Java, PowerBuilder,

C, Assembler - whatever

language has appeared since

1976. Victor is one of the

creators of XMLSP, the product

that pioneered AJAX in 1999.

victorrasputnis@teamcti.com

by Victor Rasputnis,
Anatole Tartakovsky, and Igor Nys

B

Intelligent
 Web Applications with

Feature

with AJAX
A peek into modern technologies for
browser-based appliacations

29September 2005JDJ.SYS-CON.com

together. Now, without further ado, let’s dive into a simple AJAX
example.

Zip Codes Validation and Lookup
 We’ll create an HTML page containing three INPUT fi elds:
Zip, City, and State. We’ll make sure that as soon as the user
enters the fi rst three digits of the zip code, the state will get
populated with the fi rst matching state value. Once the user
types in all fi ve zip digits, we’ll instantly determine and populate
the appropriate city. If the zip code isn’t valid (not found in the
server’s database), we’ll turn the zip’s border color to red. Such
visual clues are helpful to users and have become standard in
modern browsers (as an example, Firefox fi nds matching words
in an HTML page by highlighting them in the browser search
fi eld while you type).
 Let’s start with a simple HTML containing three input fi elds:
zip, city, and state. Please note that the method zipChanged()
is called as soon as a character is entered in the zip fi eld. In
turn, the JavaScript function zipChanged() (see below) calls
the function updateState() when the zip length is three and
up-dateCity() when the length of the zip is fi ve. Both updateC-
ity() and updateState() delegate most of the work to another
function – ask().

Zip:<input id=”zipcode” type=”text” maxlength=”5”

onKeyUp=”zipChanged()” style=”width:60”/>

City: <input id=”city” disabled maxlength=”32” style=”width:160”/>

State:<input id=”state” disabled maxlength=”2” style=”width:30”/>

<script src=”xmlhttp.js”></script>

<script>

var zipField = null;

function zipChanged(){

 zipField = document.getElementById(“zipcode”)

 var zip = zipField.value;

 zip.length == 3?updateState(zip):zip.length == 5?updateCity(zip):””;

}

function updateState(zip) {

 var stateField = document.getElementById(“state”);

 ask(“resolveZip.jsp?lookupType=state&zip=”+zip, stateField, zip-

Field);

}

function updateCity(zip) {

 var cityField = document.getElementById(“city”);

 ask(“resolveZip.jsp? lookupType=city&zip=”+zip, cityField, zipField);

}

</script>

 The function ask() communicates with the server and assigns
a callback to process the server’s response (see the following
code). Later, we’ll look at the content of the dual-natured re-
solveZip.jsp that looks up the city or state information depend-
ing on the number of characters in the zip fi eld. Importantly,
ask() uses the asynchronous fl avor of the XmlHttpRequest
so that populating the state and city fi elds or coloring the zip
border is done without slowing data entry down. First, we call
request.open(), which opens the socket channel with the server
using one of the HTTP verbs (GET or POST) as the fi rst argu-
ment and the URL of the data provider as a second one. The last
argument of the request.open() is set to true, which indicates
the asynchronous nature of the request. Note that the request
hasn’t been submitted yet. That happens with the request.send()

call, which can provide any necessary payload for POST. With
asynchronous requests we have to assign the request’s callback
using the request.onreadystatechanged attribute. (If the request
had been synchronous, we could have processed the results
immediately after request.send, but we would have blocked the
user until the request was completed.)

HTTPRequest = function () {

 var xmlhttp=null;

 try {

 xmlhttp = new ActiveXObject(“Msxml2.XMLHTTP”);

 } catch (_e) {

 try {

 xmlhttp = new ActiveXObject(“Microsoft.XMLHTTP”);

 } catch (_E) { }

 }

 if (!xmlhttp && typeof XMLHttpRequest != ʻundefinedʼ) {

 try {

 xmlhttp = new XMLHttpRequest();

 } catch (e) {

 xmlhttp = false;

 } }

 return xmlhttp;

}

function ask(url, fieldToFill, lookupField) {

 var http = new HTTPRequest();

 http.open(“GET”, url, true);

 http.onreadystatechange = function (){ handleHttpResponse(http,

fieldToFill, lookupField)};

 http.send(null);

}

function handleHttpResponse(http, fieldToFill, lookupField) {

 if (http.readyState == 4) {

 result = http.responseText;

 if (-1 != result.search(“null”)) {

 lookupField.style.borderColor = “red”;

 fieldToFill.value = “”;

 } else {

 lookupField.style.borderColor = “”;

 fieldToFill.value = result;

} } }

 The HttpRequest() function (see above) used by ask() is a
cross-browser constructor of an instance of the XMLHTTPRe-
quest; we’ll look at it a bit later. For now, note how the invocation
of handleResponse() is wrapped by an anonymous function (a
so-called closure) function (){ handleHttpResponse(http, fi eldTo-
Fill, lookupField)}.
 The code for that function is dynamically created and
compiled every time we do an assignment to the http.onread-
statechange property. As a result, JavaScript creates a pointer
to the context with all variables that the enclosing method
– ask() – has access to. It’s done so the anonymous function and
handleResponse() are guaranteed full access to all context-
hosted variables until the reference to the anonymous function
is garbage-collected. In other words, whenever our anonymous
function gets invoked, it can refer to the request, fi eldToFill, and
lookupField variables as seamlessly as if they were global. It’s
also true that every invocation of ask() will create a separate
copy of the environment with the variables holding the values
of the moment the closure was formed.

Anatole Tartakovsky is a

New York-based software

developer, lecturer,

consultant, and author.

He is currently working

as the CTO at Computer

Technology, Inc., focused

on developing AJAX/FLEX

solutions for the fi nancial

and retail industries.

anatolet@teamcti.com

together. Now, without further ado, let’s dive into a simple AJAX
example.

Zip Codes Validation and Lookup
 We’ll create an HTML page containing three INPUT fi elds:
Zip, City, and State. We’ll make sure that as soon as the user
enters the fi rst three digits of the zip code, the state will get
populated with the fi rst matching state value. Once the user
types in all fi ve zip digits, we’ll instantly determine and populate
the appropriate city. If the zip code isn’t valid (not found in the
server’s database), we’ll turn the zip’s border color to red. Such
visual clues are helpful to users and have become standard in
modern browsers (as an example, Firefox fi nds matching words
in an HTML page by highlighting them in the browser search
fi eld while you type).
 Let’s start with a simple HTML containing three input fi elds:

AJAX
A peek into modern technologies for
browser-based appliacations

Igor Nys is a director of

technology solutions at

EPAM Systems. He was

closely involved in the

software development

based on XMLSP technology

– one of the AJAX pioneers.

igordnys@gmail.com

JDJ.SYS-CON.com30 September 2005

 Let’s look at the function handleResponse(). Since it can be
invoked at different states of the request processing, the func-
tion ignores all cases except the one when the request process-
ing is complete. This corresponds to the request.readyState
property equal to 4 (“Completed”). At this point the function
reads the server’s response text. Contrary to what its name may
suggest, neither the input nor the output of XmlHttpRequest
has to be restrained to XML. In particular, our resolveZip.jsp
(see Listing 1) returns plain text. If the return value is “un-
known” the function assumes that the zip code was invalid and
changes the border color of the lookup field (zip) to red. Other-
wise, the return value is used to populate the fill field (state or
city), and zip’s border is assigned a default color.

XMLHttpRequest – the Transport Object
 Let’s return to our cross-browser implementation of
XMLHTTPRequest. The last listing contains an HttpRequest()
function that’s upward-compatible with IE5.0 and Mozilla
1.8/FireFox. For simplicity’s sake, we just try to create a Micro-
soft XMLHTTPRequest object – and if that fails we assume it’s
Firefox/Mozilla.
 At the heart of this function is the XMLHTTPRequest –
a native browser object, which facilitates anything that involves
HTTP protocol in commu-nicating with the server. It allows
specifying any HTTP verbs, headers, and payload and works in
either asynchronous or synchronous mode. No downloads or
plugins are required, although in the case of IE, XMLHTTPRe-
quest is an ActiveX integrated inside the browser. Accordingly,
the “Run ActiveX Control and Plugins” default IE permission
should be in place to use it.
 Most important, XMLHTTPRequest allows an RPC-style
programmatic query to the server without any page refresh.
It does it in a predictable, controlled way, offering complete
access to all details of the HTTP protocol, including the headers
and any custom formatting of the data. In future articles, we’ll
show you industrial protocols that you can run on top of this
transport including Web Services and XML-RPC that greatly
simplify developing and maintaining large-scale applications.

The Server-Side Logic
 Finally, the server-side resolveZip.jsp is invoked from the
function ask() as shown in Listing 1. The resolveZip.jsp is called
in two separate scenarios differentiated by the current length
of the zip code (see the zipChanged() function.) The value of
the request parameter lookupType is either state or city. For
simplicity’s sake, we’ll assume that two files, state.properties
and city.properties, are located in the root directory of the
c: drive of the server. The resolveZip.jsp logic is confined to
returning the lookup value with the appropriate pre-loaded
file – once in each case of course.
 Our AJAX-enabled page is ready. The complete working
example is available at: http://www.ajaxmaker.com:8080/blog/
zipsearch.htm.

Remote Scripting – An Alternative Approach
 Some older AJAX implementations are based on so-called re-
mote scripting. The idea is that the user’s actions result in que-
rying the server via IFRAME, and the server responds with the
JavaScript, which is immediately executed as soon as it reaches
the client. This is a big difference compared to XMLHttpRe-

quest approach, where the server responds with the data and
the client interprets the data. The advantage is that this solution
supports older browsers.
 The HTML portion of the IFRAME-based example (see List-
ing 2) is similar to the one we’ve used in the XMLHTTPRequest
scenario, but this time we’ll introduce an extra IFRAME element
– controller:

Zip:<input id=”zipcode” type=”text” maxlength=”5”

onKeyUp=”zipChanged()” style=”width:60” size=”20”/>

City: <input id=”city” disabled maxlength=”32” style=”width:160”

size=”20”/>

State:<input id=”state” disabled maxlength=”2” style=”width:30”

size=”20”/>

<iframe id=”controller” style=”visibility:hidden;width:0;height:0”></

iframe>

 We keep calling zipChanged() per every key stroke, but this
time the function ask(), called from zipChanged() (see Listing 3),
sets the IFRAME’s src property, instead of invoking an XML-
HTTPRequest:

function ask(url, fieldToFill, lookupField)

{

 var controller = document.getElementById(“controller”);

 controller.src = url+”&field=”+fieldToFill.id+”&zip=”+lookupField.id;

}

 The server-side logic is presented by a sketchy resolveZip.jsp
(see Listing 4). It’s different from its XMLHTTPRequest counter-
part in that it returns JavaScript statements, which set the global
values of the variables field lookup and city and the call function
response() from the global window’s execution context as soon
as it gets to the browser. (Listings 5–7 can be downloaded from
www.jdj.sys-con.com.)
 The function response() is a modified version of the han-
dleResponse() which is absolved from dealing with uncompleted
requests (see Listing 2.)

The Fine Print
 For simplicity’s sake, we’ve “overlooked” some important is-
sues in our sample code:
1. The fact that the instances of the XMLHTTPRequest object

and callback invocations haven’t been destroyed after being
used, which causes memory leaks after every call. Properly
written code should destroy or reuse such instances in the
object pool. Object management techniques common to
the server software have to be used for the client

2. In quite a few places the errors weren’t handled properly.
For example, the call to request.open() in the method ask()
can throw an exception that has to be caught and processed
even though JavaScript exceptions don’t have to be checked.
The handleResponse() function is another example. It has
to check headers and responseText for possible server-side
and communication errors. In case of an error, it has to try
to recover and/or report an error. Properly developed AJAX
applications eliminate loosing data on “submissions” due to
disconnects and other low-level communication problems
via a robust, self-recovering framework.

Feature

JDJ.SYS-CON.com32 September 2005

3. Current server-side frameworks provide quite a few
functions that have to be reconciled with a refresh-free
approach. For example, let’s consider a custom server-side
authentication with a timeout. In that case we’d have to
intercept security system response to the XMLHTTPRequest
calls, bring up the login screen, and then re-issue the
request after the user was authenticated.

 All these problems are typical of any application code work-
ing with low-level APIs and all of them can be resolved. The
good news is that the technologies needed to resolve these
issues are quite familiar to most Java developers like Web Ser-
vices, custom tags, and XML/XSLT. The only difference is that
nowadays these technologies come to the rescue on the client
in the form of:
• Web Services using SOAP/REST/RPC for a simple commu-

nication standard
• Client-side custom tags for packaging rich client-side con-

trols with integrated AJAX functionality
• XML- and XSLT-based data manipulation

 JDJ will publish more articles on AJAX where you’ll leaarn
how to use these technologies to make AJAX solutions both
simple and robust.

Summary
 The AJAX approach offers a rich Internet experience on a
par with that of desktop applications. AJAX features have to be
applied selectively: you definitely don’t want your credit card
charged by the background process while you’re still shopping.
Is AJAX momentum sustainable? We certainly hope so. We’ve
been developing AJAX applications for the last sive years and
can attest that it’s sound and very effective. However, it requires
that a developer be exposed to a much wider set of technolo-
gies than the ones used in the traditional “click-refresh” Web
applications.

Feature

Listing 1: resolveZip.jsp
<%@ page info=”resolveZip” %>
<%@page import=”java.util.Properties”%>

<%
 String lookupType = request.getParameter(“lookupType”);

 Properties properties = (Properties)getServletContext().getAttribute
(lookupType);

 if (properties == null)
 {
 properties = new Properties();
 try {
 properties.load(new java.io.FileInputStream(“c:\\
” + lookupType + “.property”));
 getServletContext().setAttribute(key, properties);

 } catch (java.io.IOException e) {
 out.println(“Property File not found”);
 }
 }
 out.println(properties.getProperty(request.getParameter(“zip”)));
%>

Listing 2: zipsearch.html (IFRAME)
Zip:<input id=”zipcode” type=”text” maxlength=”5”
onKeyUp=”zipchanged()” style=”width:60” size=”20”/>
City: <input id=”city” disabled maxlength=”32” style=”width:160”
size=”20”/>
State:<input id=”state” disabled maxlength=”2” style=”width:30”
size=”20”/>
<iframe id=”controller” style=”visibility:hidden;width:0;height:0”></
iframe>

<script src=”iframe.js”></script>
<script>
var zipField = null;
function zipchanged(){
 zipField = document.getElementById(“zipcode”)
 var zip = zipField.value;
 zip.length == 3?updateState(zip):zip.length == 5?updateCity(zip):””;

}
function updateState(zip) {
 var stateField = document.getElementById(“state”);
 ask(“resolveZip.jsp?lookupType=state&zip=”+zip, stateField, zip-
Field);
}
function updateCity(zip) {
 var cityField = document.getElementById(“city”);
 ask(“resolveZip.jsp?lookupType=city&zip=”+zip, cityField, zipField);
}
</script>

Listing 3: iframe.js
function response(result, fieldToFill, lookupField)
{
 var lookup = document.getElementById(lookupField);
 var fill = document.getElementById(fieldToFill);

 if (result == “null”) {
 lookup.style.borderColor = “red”;
 fill.value = “”;
 } else {
 lookup.style.borderColor = “”;
 fill.value = result;
 }
}

function ask(url, fieldToFill, lookupField)
{
 var controller = document.getElementById(“controller”);
 controller.src = url+”&field=”+fieldToFill.id+”&lookup=”+lookupField
.id;
}

Listing 4: resolveZip.jsp (IFRAME)
<%@ page info=”resolveZip” %>
<%@page import=”java.util.Properties”%>

<script>
<%
 String lookupType = request.getParameter(“lookupType”);

 Properties properties = (Properties)getServletContext().getAttribute
(lookupType);

 if (properties == null)
 {
 properties = new Properties();
 try {
 properties.load(new java.io.FileInputStream(“c:\\
” + lookupType + “.property”));
 getServletContext().setAttribute(key, properties);

 } catch (java.io.IOException e) {
 out.println(“Property File not found”);
 }
 }

 out.println(“var field= ʻ” + request.getParameter(“field”) +”ʼ”);
 out.println(“var lookup= ʻ” + request.getParameter(“zip”) +”ʼ”);
 out.println(“var result= ʻ” + properties.getProperty(request.
getParameter(“zip”)) +”ʼ”);
%>
 window.top.window.response(result, field, lookup);
</script>

JDJ.SYS-CON.com34 September 2005

ighway and Java enterprise ap-
plication projects have much in
common. Both can suffer from
design flaws, stalled flow, and

unforeseen performance glitches. But
in the case of Java enterprise applica-
tions, performance management tools
can help developers highlight potential
problems before they derail these criti-
cal projects.
 Java’s infancy in the late ’90s began
as a free-for-all with simple applica-
tions that exposed information to an
exploding number of users. As the Java
language and Java developers ma-
tured, J2EE emerged and enterprises
began a more cautious approach to
developing Java applications. Applica-
tions moved away from simple presen-
tation layers into a torrent of complex
Java deployments.
 Today we see massive, compos-
ite applications built on platforms
like WebLogic, WebSphere, and SAP
NetWeaver, changing the way the
world conducts business. But they, like
huge engineering projects, sometimes
become so complex that it is difficult
to gain visibility into all elements of the
application, and to proactively manage
it so that small problems are identified
and solved before they impact perfor-
mance and availability.
Are there lessons that Java
application developers
can learn from engineers

to ensure applications move smoothly
from development through QA and into
production?
 Consider Boston’s Big Dig, one of the
largest American public engineering
projects since the Hoover Dam was built
in the 1930s. Consider its magnitude in
terms of money (over $14 billion thus
far) and scale (diverting miles of high-
way underneath the city).
 This project has become one of the
biggest engineering missteps in recent
history; the latest problem to beset the
project is a flood of millions of gallons
of water gushing from over 400 leaks
breaching the tunnel walls. Moreover,
the mistake wasn’t fully realized until
thousands were using the tunnel daily.
The city of Boston is now knee-deep
in problem analysis, fingerpointing
among vendors, and questions such
as: Could this have been predicted and
prevented? Why didn’t the project team
isolate the problem during testing?
 A business enterprise may be con-
sidering not so dissimilar engineering
projects in mass and scale, investing
millions of dollars in information
technologies. And project goals are
likely the same: optimize throughput
and increase user satisfaction while
minimizing time and cost.

 Today, many projects that
depend on integration and col-
laboration will rely on enter-
prise portals and J2EE tech-
nologies. Multiple silos within
an enterprise can integrate
seamlessly and share informa-
tion. Reusable components
lead to faster time
to develop-

ment and more robust applications.
The success of these projects is critical
to the success of business processes
– in many cases they are the business.
 With so much at stake, how can
companies isolate and eliminate the
blunders that eluded Boston’s engi-
neers? How can they maintain quality
and ensure that minor issues do not
escalate into massive outages? How can
they predict and eliminate problems
before they affect their customers?

Proven Performance Management
Solution
 Based on Wily Technology’s exten-
sive experience helping its customers
manage the performance of their
J2EE environments, we have identi-
fied the following criteria as essential
for effective application performance
management:
• Monitor application health and

availability 24x7 in real time.
• Isolate the cause of performance

issues throughout the application
environment, at each stage of the
application life cycle, from the
J2EE application itself to back-end
systems.

• Provide customized, detailed data to
everyone with a stake in the perfor-
mance of the application.

 An effective management solution
must provide monitoring, issue analysis,
and problem triage of the J2EE ap-
plication platform, all with 360 degree
visibility into Web application
components and their inter-
action. Components include

Case Study

by Jason Collins

What Java Developers Can
Learn from Boston’s Big Dig...

H

Jason Collins is a systems

engineer with Wily Technology

in the San Francisco Bay Area.

Prior to joining Wily in 2002,

Jason consulted with Computer

Sciences Corporation and

developed business technology

implementations for Bay Area

startup companies. He received

his BS from Duke University in

biomedical engineering.

35September 2005JDJ.SYS-CON.com

user response, network latency, the virtual machine, the
J2EE application server database, messaging, Web services,
and back-end applications.
 Further, this information must be shared among develop-
ment and operations within IT, and in some cases with the
business units themselves. This requires the use of a single
tool that draws on the same consistent data to produce high-
ly customized dashboards, highlighting the specific areas of
concern for each stakeholder.
 Consider the Big Dig again. The 400 gushing leaks were
once minor cracks. Cracks escalated into holes and holes
into inch-wide fissures. Applications behave the same way;
a management solution must detect minor issues in the ap-
plication before they become critical outages.
 Leaks can become as severe as system crashes every few
hours in a production application. Java developers are not
burdened by memory management, since the JVM does
garbage collection. In many cases, however, data structures
are misused in memory. Monitoring the most aggressively
growing data structures is necessary to eliminate misuse in
the source code.
 J2EE applications have resources – called threads – to per-
form a unit of work. The number of threads in an applica-
tion is limited, like the number of lanes on the underground
highway. To move beyond the limit requires new hardware
– a new tunnel or new CPU.
 Construction or accidents can block highways. Applica-
tion threads become stalled for a variety of reasons - back-
end systems are down, resources are over-utilized, or the
network is busy.
 It is necessary to detect these stalled threads. Because
performance response time is a lagging indicator, monitor-
ing leading indicators such as stalls can predict and isolate
problems before they escalate.

Measuring and Monitoring Flow
 Imagine “concurrency” on a highway as the number of
lanes holding a car within a highway cross-section. Concur-
rency for a highway can be predicted for the time of day but
go unpredicted for events such as heavy rains. Similarly, ap-
plications are quantified by throughput – requests processed
per second. Concurrency monitoring provides a deeper
analysis of where application threads are busy.
 Concurrency in an application can be base lined for a par-
ticular time of the day. When levels exceed normal, concur-
rency will show which application components are prob-
lematic. Historical performance data helps determine which
components need to scale as user load increases. After all, the
goal is to ensure and increase user acceptance.
 Consider the Big Dig one last time. Critics blame the
vendors for discovering the problems only after commuters
started using the tunnel. Let’s assume that the vendors per-
formed due diligence. Leaks could indicate the stress of both
user load and time. Applications may also pass user-accep-
tance testing and system-integration testing, but usage-test-
ing scenarios may not expose deficiencies.

 Most problems occur only when real customers start to use
the application. Retesting the application after implementa-
tion will not work either. That J2EE is the middleware between
different systems increases the risks dramatically. A produc-
tion-monitoring tool is needed to expose these problems
– one that can provide full visibility with negligible overhead.
An early warning system should alert operators and support
personnel of potential problems before traffic is slowed or
halted altogether.
 J2EE projects face issues similar to those of large-scale
engineering projects. Problems are inevitable, but nevertheless
resolvable and often times predictable. Wily research shows that
problems are seldom caused by the vendor platform, but often
lie in back-end connections or custom development. The earlier
those problems are detected, the less likely they will escalate
into major setbacks. Problem mitigation becomes more difficult
further along the project timeline. Projects can minimize these
issues effectively by using a management solution that meets
the requirements for successful application deployment.
 Ultimately, projects that include performance management
throughout the application life cycle are more likely to succeed
and provide faster time to value.
Can you dig it?

Today, many projects that depend on integration
and collaboration will rely on enterprise portals and J2EE technologies”“

JDJ.SYS-CON.com36 September 2005

any years ago I saved up for
a 16K RAM pack for my tiny
Sinclair ZX81 computer. I
thought, rather naively, that

this was going to be the answer to all my
memory issues. I would be able to use
increasingly complex programs, okay
games, and I could program without
the restriction of literally making every
byte count. I quickly found out, as you
have already discovered if you have been
writing Java applications for a while, that
adding more memory to your machine
is not always the answer to the running
out-of-memory problem, the infamous
“OutofMemoryError”. Dr. Phil, a TV
psychologist, likes to use the quote, “You
can’t solve money problems with money.”
I believe the same thing applies to the
JVM, “You can’t always solve memory
problems, with more memory.” Treating
just the symptom doesn’t have a long-
lasting effect.
 So why, when Java was going to save
us all from thinking about memory al-
location, do we now have to think about
memory allocation? If you look around,
it’s obviously a common issue, and there
is no shortage of profiling and diagnostic
tools. Carlos E. Perez covers a long list
of tools in his manageability blog: www.
manageability.org/blog/stuff/open-
source-profilers-for-java/view and that’s
not even the full list Java developers have
at hand.
 Go to any Java conference and you
are bound to hear at least one presenta-
tion about out-of-memory errors. There
were some good sessions at this year’s
JavaOne. One was a packed BOF led by
some of my old colleagues from the Sun
serviceability team discussing the six
ways to meet an out-of-memory error
and another from Steffan and the JRockit
JVM team at BEA.

Memory Leaks in Production
 The challenge has always been to
provide a memory leak tool that your IT
staff will let you try in production. Real-
istically, many slow memory leaks only
occur at deployment time, partly due to

the changed environment and partly due
to the longer uptime of the application.
In many cases an IDE-based tool may
not be convenient in those scenarios; the
other catch is that you also want the di-
agnostics to have a minimal affect on the
application itself. So recompiling to add
profiling hooks is often really only the last
resort, if at all. To help ease this barrier
to adoption, JDK 5.0 included byte code
insertion, this technology has been used
by profiling tools to do this ‘re-compila-
tion’ at runtime to make this more palat-
able One thing that you may not be
aware of is that the Sun JVM
automatically generates
some very lightweight
counters, available by
default in 1.4.2. Sun
JVM tools such as
jmap and visualgc can
provide a view into the
garbage collectors opera-
tion. The jconsole demo in
JDK 5.0 also provides some insight
into the garbage collector providing you
started the JVM with the option -Dcom.
sun.management.jmxremote.
 There is also an improved hprof profile
agent in JDK 5.0 that can be used to
dump out profiling information in a for-
mat that can be used by the hat analysis
tool from java.net. I find it more useful
for snapshotting a JVM, than letting it run
to completion. To generate a hprof file I
can use QUIT signal, kill -3 on Unix after
starting the JVM with the hprof agent
-agentlib:hprof=heap=all,format=b. The
hat tool looks for the java.hprof output
file by default and starts a mini Web
server at port 7000. This allows you to
browse the object instances used by the
JVM. It’s by no means as powerful as the
commercial tools, but can give you some
clues as to what is going on.

Who Has My Memory?
 Everyone generally has the same
advice about memory leaks in Java.
Providing you have already sized your
maximum heap correctly (if heap is the
detected out-of-memory condition), e.g.,

-Xmx512m, then some number of objects
is holding onto references to other ob-
jects that are no longer required. As these
objects are still reachable, and hence live,
they will not be marked by the garbage
collector as objects that can be deleted.
 One of the classic examples given is
that you wrote some JNI code and forgot
to free the memory. Now, admittedly,
that’s fairly easy to do if you are using JNI,
but what if your application has no JNI
code at all?
 First, rule out your code or dependent
libraries or even the JVM. It’s less com-

mon than it used to be, but JVMs
do still have bugs. One area to

check is if there are exceptions
at deployment time. Some-
times the unsuccessful code
paths are not as diligent at
cleaning up non-local in-

stances as the successful code
path. Even a simple operation,

such as creating a substring from
a string, and some StringBuffer opera-

tions have caused leaks in a few of the 1.4
releases.
 Dependent libraries could be an XML
parser or JDBC driver. Both need to
frequently build, manipulate, and copy
chunks of data. Try using an alternative
release number or version of both. Again
it may not be your code at fault. If you
still strongly suspect you’ve introduced
the leak, what should you look at?
Caches are prime suspects, or any place
where you store references, whether it’s
a vector, array or Collection can easily
always hang on to reachable objects.
Make sure you null the references or use
weak references. Other areas to check are
custom classloaders if you use them. By
their very nature they hold on to many
references, and if you’re using finalizers.
remember they may never get called.
 Now that desktop machines have 1Gb
of memory installed instead of 1K, it’s still
necessary to watch your bytes. Track-
ing down a memory leak is never easy,
however, there are certainly more tools
and techniques at your disposal than ever
before.

Core and Internals Viewpoint

Calvin Austin
Core and Internals Editor

Help I’m Out of Memory!

M

A section editor of JDJ since

June 2004, Calvin Austin

is an engineer at SpikeSource.

com. He previously led the

J2SE 5.0 release at Sun

Microsystems and also led

Sun’s Java on Linux port.

calvin.austin@sys-con.com

JDJ.SYS-CON.com38 September 2005

pplication architects have
heard about the increased
importance of security, but
in many cases they really

don’t know how to approach this
issue. In this article, I’ll share my
experience and define a few basic
steps and checkpoints for building
application architecture with security
in mind.
 This year, architects have started
to face several domestic (SOX and
HIPPA) and even international (Basel
II) regulations that require a certain
level of protection of the personal
and financial data that’s processed
and owned by the companies. Though
network and operating system secu-
rity solutions have done a great job
in their domains, there is still one
weakly protected path to corporate
data – it’s a spectrum of commercial
and homegrown applications. I won’t
discuss why security is important
and what is required by the regula-
tions because you can find a lot of
related materials in JDJ and other
on- and off-line resources. My goal
is to identify and explain the most
important steps to be taken toward
security when building application
architecture.

Step1: Requirements
 Review your business and techni-
cal requirements to see if security is
addressed there. If you find security
requirements are absent or denied,
e.g., “encryption of communication
between servers is not required,” col-
lect and verify the requirements. In
both cases, check requirements with
the legal and compliance depart-
ment – the statement “we usually do
not do encryption for internal data
exchange” may not be valid anymore
in the light of new regulations.
 During requirements gathering and

analysis, identify corporate security
resources and policies. In particular:
• Consider integration with identity

management and access control
systems (for example, Liberty
Alliance Identity Management or
BEA’s WebLogic Enterprise Security
solutions).

• Discuss user activities that should
be controlled and later audited in
order to meet the policies.

• Consider the use of application
state/status monitoring (e.g., via
JMX) to easier recognize abnormal
behavior potentially caused by
security violations.

• Consider the operational proce-
dures for obtaining access permis-
sions for application users and
periodic user access recertification.

 You can find some examples of
security policies in the sidebar:
Examples of Security Policies for Web
Applications.

Step 2: Sensitive Resources
 Examine business models, data
sources, the data, and the user com-
munity for your future application.
This should help you to recognize
the points that might be the most
lucrative to a potential intruder. In the
process, you have to answer, at least,
some questions, such as:
• How does the business model

implemented by the application
affect the financial reporting and
status of your organization?

• Does the data include personal
and/or financial information and
how attractive it may be to an
intruder?

• Are the data sources reliable and
secured, and can/may you verify it
if necessary?

• Are the application customers
internal or external with regard to
the served organization?

• If they are internal, do you really
know who they are, e.g., does your
application use information from
the user provisioning and identity
management system? If the users
are external, are they controlled by
your partner/provider or consumer
organization or is it an open public
audience?

• Due to the nature of the application
and data, should you expect tar-
geted intruder attacks or is it likely
the application will be under less
sophisticated “curiosity” attacks?

Step 3: Creation of the Architecture
 Armed with the knowledge of
corporate and industry policies, on
the one hand, and with the picture
of potential spots of security viola-
tion in your application on the other,
create the architecture and the high
level-design. Since we know there is
no such thing as 100% security for the
functioning application, the architect
has to prioritize the potential risks
of deliberate and accidental security
violations and intrusions.
 It’s very important to estimate the
consequences of a security violation
or an impact of security breaches on
the application, other applications,
and your entire organization. Keep in
mind that some intrusions are highly
possible but may have no or very little
impact. The others, on the contrary,
are much less probable but cause
consequences that may be terrible.

Security

by Michael Poulin

How to Deal with Security When
Building Application Architecture

A

Michael Poulin is a SW

professional with 25 years of

experience working as a

technical architect for a leading

Wall Street firm. He’s a Sun

Certified Architect for Java

Technology and IT Project+

Certified Professional. For the

past several years Michael

has specialized in distributed

computing, application security,

and SOA.

mpoulin@usa.com

Are you ready to face the challenge?

39September 2005JDJ.SYS-CON.com

 Here are two examples:
1. Let’s assume you’ve designed a Web

application that would be deployed
in a DMZ (demilitarized zone, i.e.,
the network zone between two
firewalls). In our day, you have to
expect continuous hacker attacks;
if you constructed and deployed
the application smartly (see Web
Application Security Consortium,
http://www.webappsec.org/), the
majority of attacks would “die” in
there and not penetrate into the
middle and back-end layers.

2. If you design an “internal” applica-
tion that is accessible to the opera-
tion team and supporting develop-
ers, there are a lot of risks as well.
For instance, you have to watch
whether a database user name/
password pair is stored “in clear”
in the application configuration
file. The probability of password
misuse is low, but, as you know, in
crisis situations we use all available
developers, some of whom may be
foreign contractors or even offshore
programmers who have had little or
no background check. So, a “clear”
password is a “piece of cake” for

really bad guys; with these pass-
words he or she can get access to a
company’s strategic data. Then, just
use your imagination…

 When security risks are prioritized,
it’s easier to concentrate on the most
dangerous ones and address them
sequentially, in an iterative manner,
spreading the cost of security controls
over multiple phases of application
implementation.

Step 4: Secured Design Solutions
 After you have identified and
prioritized security risks, try to come
up with more secure solutions, to
the best of your knowledge. For this,
don’t ignore the operational aspects
of the application – a lot of security
concerns may be covered via opera-
tional activities, not by the code only.
For example, the application might
not need to manage login credentials
for the users if there is a strong user
authentication operational proce-
dure in place. In another example,
Application A maintains a password
for Application B in the configura-
tion file in the encrypted form; if both

applications are deployed on the
BEA WebLogic platform in a trusted
domain, Application A would not need
neither the password encryption nor
the password itself for Application B.
 In most of the cases, just following
two architectural principles can pro-
vide a much higher level of security
for the application. The principles are:
• Layered application architecture. The

J2EE platform perfectly supports
layered architecture. It contributes
to the scalability, stability, and secu-
rity of the entire application. If you
accept an idea that each layer of the
application responds to its special
requirements (e.g., the Presentation
layer responds to user experi-
ence requirements; the Business
layer, business requirements; the
Persistence layer, data management
requirements), it will be much easier
for you to design the application and
preserve security integrity.

• Separation of responsibilities. For
example, the delegation of data
access from the Presentation layer to
the Business layer can protect your
database from easy exposure to the
intruder of the Web application.

JDJ.SYS-CON.com40 September 2005

 I can easily anticipate that many
architects will say, “Look, you recom-
mend that we apply a lot of extra
work while we have to implement the
business tasks in the application,”
or “If we start to implement all these
security controls and protections,
we’ll get certain performance deg-
radation in the application,” and so
on. Yes, you’re absolutely right! If you
think about security as an additional
feature instead of an organic business
requirement, which makes the ap-
plication trusted, the application will
be sacrificed. That’s why it’s better to
embed security into the structure of
the application at the earliest pos-
sible step of the architecture design
process.
 Security requires resources and
processing time. To support a certain
level of performances and address se-
curity, the architecture has to repre-
sent “compensating” solutions. That
is, you have to find solutions that

save resources and execution time
to spend them on application secu-
rity needs at runtime. For example, if
security controls take much time, use
caching more intensively; if gather-
ing audit information about user
activities slows down applica-tion
response, invoke asynchronous ac-
quisition of audit data. For example,
when implementing an MVC pattern
as Struts and deal with audit, the
ActionServlet or the code pointed by
ActionFor-ward class can send audit
data via JMS to the audit storage
instead of holding up the response
thread while writing audit data into
the database by itself.

Step 5: Architecture Security Review
 When the architecture and high-
level design are complete, invite
the legal and compliance department
to review them. Your goal is to get a
sign-off on your design and security
risk mitigation solutions.

Step 6: Post-Design Security Testing
 The architect can contribute a
lot to security even in post-design
phases:
• If you are the architect who accom-

panies the project through the
implementation, I would recom-
mend invoking the legal and com-
pliance department once again to
review the code from a security
perspective.

• You shouldn’t concentrate on a
static analysis of the code against
security policies and delegate such
tests to QA. However, since you are
probably the one who knows the
weaknesses of the whole applica-
tion (short-cuts and design com-
promises taken during implemen-
tation), you are the right person for
the task of designing penetration
tests.

• Finally, since you know what to
expect from the integral execu-
tion of different elements of the
application, you can identify
“unusual” activities in the applica-
tion log (open source commons-
logging with log4j or standard java.
util.logging logging package may
be recommended for logging).
Recognition of these activities may
help to automate a security log
reviews in the application mainte-
nance phase.

 Now, you are ready to face the
security challenge! By guarding your
application, you guard your organi-
zation, your customers, and, finally,
yourself.

Resources
• Kolawa, A., and Fain, Y. “Java

Application Security in the
Corporate World”: http://java.sys-
con.com/read/99704.htm

• Pasley, K. “Sarbanes-Oxley (SOX)—
Impact on Security In Software”:
http://www.developer.com/java/
ent/article.php/3320861

• Newman, H. “HIPAA and SOX:
What You Need To Know”: http://
www.enterprisestorageforum.
com/continuity/features/article.
php/3506751

• Owen, M. ”Preparing for the
Pain of Basel II”: http://www.
developer.com/java/ent/article.
php/3403901

Security

• UserID and password must be sent via the POST method only.

• Password should be encrypted when stored in the database.

• In production, remove all “backdoor” login code.

• Assigned accounts should be locked if a number of wrong attempts to login exceeds N times.

• Validate all data coming from external resources, especially from the user’s browser.

• Input data should be validated using the strongest validation level (Exact Match, Known Good
Validation, Exclude Known Bad).

• In case of fatal errors, the application has to fail securely (error handling).

• Confidential information should not be written in regular log files.

• Log file access should be protected.

• No messages sent back to the browser may contain any debug information.

• No messages sent back to the browser may contain any server-side information.

• Logging error messages should not differentiate between wrong UserID and wrong password.

• No database-related information should be returned back to the user in error messages.

• If the cookies are not protected by an encryption (hashing, obfuscation), the data in them should
be validated before use.

• Session time-to-live must be agile to corporate security policies, not to the business model (if
needed, the session has to be gracefully refreshed).

• Avoid hidden fields in the Web page.

• Where possible, for all requests choose the API that can provide a UserID and password, and use
authorization control with the least privileges rule.

Examples of Security Policies for Web Applications

�
��

��
��
��
��

��
��

��
��
��
��

��
��
��
��

��
��
��

���
���

��
���

��
��
��

��
���

��
��

��
��
��
��

��
��

��
��

���
��

��
��
��
��
���

��
��
��
��

���
��

��
��
��

��
���

��
��
��

���
��
��

��
��
���

��
��

���
��

�
��

��
��
��

��
��
��

��
��
��

��
��
��
���

��
��
��

��
��
��
���
��

���
��
��

��
���

��
��

��
��
�

���
���������������������������������������

��������������������

���������������������������������� �����
����� ����� ����� ������������ ��� �����
�������� �� ������� ���� ����� �� ������ �������
���� ���� ��� ���� ���� ���� ��� �������� ����
�������������������������������������

��
����������� ���������� ��������� �����������
���� ��� ����� ��������� ������������� ������
���� ��������� �� �������� ����������������
�����������������������������

���� ���� ��������� ���� ������� ���� ����
������ ���� ����������������� ����������
����������������������������������
�
��������� �� ������ ������ ����������� �����
��� �������� ��� ��������������������� � ���
��������������������

���

��

���

���

��
����� ������ �������� ��� �������� ��� ������ ������� ����������
���
���
�����������������������������
���

��
������� ������� ����� ��� ��������� ����� ��������� �����������
�������������������������������
���
�������� ���� ���������� ����������� ������� ���� ��� ������
���

��
��
�������������
������� ����������� ���� ����������� ����� ���������� �������
��
������� �������� ����� �� ������� ��������� ����� �� �������� ��� ��������
��

������� �

���
��
���������������� ����� ��������� �������� ������� ���� ��� ���������
��������� ����������������� ����� ������ � ������� ����������� ������
�����������������������������������
�������� ��������� ���� ���� ��������� ������������ ����� ���������
���������������������

JDJ.SYS-CON.com44 September 2005

anguage tools such as compil-
ers, interpreters, and code
generators are a critical part
of the software development

landscape. Any software project will
include several procured tools and
very likely several in-house tools.
Experience shows that the only guar-
antee with such tools is change: the
underlying language may change due
to improvements or extensions and
the functionality provided by the tool
expands, driven by user-requested fea-
tures and the need to stay in front of
the competition. The specific changes
that will be made are rarely known at
the outset, but change is coming.
 This implies that when designing
such a tool, extensibility is paramount.
So it’s important that the design is mod-
ular. A clean division of responsibilities
is needed to support maintainability,
which in turn is needed to support the
rapid pace of change typically associ-
ated with language tools.
 This article describes a proven ap-
proach to developing language-based
tools in a way that is modular, exten-
sible, and maintainable. The approach
is based on two principles: establishing
the core modules at the outset and us-
ing the visitor pattern to interact with
language sentences.
 To illustrate the approach a simple
calculator example is given. This calcu-
lator supports the addition, subtraction,
multiplication, and division of integers.
The language supported by this calcula-
tor is informally described below:

expression = constant |

 expression op expression

constant = 0 | 1 | 2 | ...

op = + | - | * | /

 This language is very simple, but
it’s sufficient to illustrate the main

concepts related to the develop-
ment of language tools. The example
is developed in Java based on the
JavaCC parser generator. However the
concepts presented are language-inde-
pendent and apply equally to C++ and
C#. All of the code shown in this article
is available for download.
 A key objective when developing a
language tool is to ensure that the tool
isn’t dependent on the actual repre-
sentation of the language. This allows
simple support for multiple language
formats, imports from other tools,
and so on. To meet this objective, a
distinction is made between concrete
and abstract syntax. This is described
below. After this the notion of context
is introduced followed by a descrip-
tion of the actual mechanism for
parsing. Then the use of the generated
parse tree is explained.

Concrete Syntax
 Concrete syntax represents the way
in which a specific file format rep-
resents the input for the tool. This is
often described using BNF or a similar
structured representation. If a parser

generator such as Lex/Yacc, Antlr, or
JavaCC is used, the concrete syntax
will be described in a generator-spe-
cific manner. A simple concrete syntax
for the calculator using JavaCC shown
is Listing 1.
 Note that normally semantic actions
would be included in such a JavaCC
description. These are presented later in
the article.
 In general there can be several con-
crete syntaxes for a language (plain text,
XML, RTF, etc.). The tool design should
be sufficiently flexible to support mul-
tiple concrete syntaxes (as well as the
ability to add further concrete syntaxes)
without having a major impact on the
rest of the tool.

Abstract Syntax
 Abstract syntax is a representation
of the language that’s independent
of the concrete syntax. The abstract
syntax representation contains only
information that’s necessary for the
tool to perform its task; any other
information is discarded. In principle
this necessary information should be
included in all concrete syntaxes. So

Techniques

by Paul Mukherjee

A Blueprint for
Developing Language Tools

L

Paul Mukherjee works as

a technical architect for

Systematic Software Engineering

Limited in Britain, and is a Sun

Certified Enterprise Architect.

He has worked on a number of

small and large projects ranging

from small J2EE solutions to

large mission-critical enterprise

application integration

programs.

pmu@systematic.dk

A proven approach to making them modular, extensible, and maintainable

 Figure 1 Abstract syntax classes

45September 2005JDJ.SYS-CON.com

there should only be one abstract
syntax regardless of the number of
concrete syntaxes. In an OO set-
ting, an abstract syntax is typically
a tree-structure that reflects the
way in which language sentences
can be constructed. The abstract
syntax fulfils a number of func-
tions. It:
• Represents the program
• Stores any necessary information

related to the concrete repre-
sentation (e.g., for pretty print-
ing, relating error messages to
specific file locations, etc.). This
is explored further in the next sec-
tion.

• Exposes the above information
to tools without revealing imple-
mentation details.

 The tree-like structure of the
abstract syntax is represented
using inheritance; we use context
information objects to store the
necessary information from the
concrete representation; exposing
information to tools without reveal-
ing implementation is achieved with
interfaces. And since the abstract
syntax has a tree-like structure, tools
will access it using a visitor pattern.
This basic structure is shown in
Figure 1.
 Notice that the package arrange-
ment in Figure 1 follows the conven-
tion used in Eclipse that dictates
that classes in a package named
intern are not to be exposed to other
tools.

Context Information
 The idea of creating abstract
syntax is that the tool will use these
objects to achieve its goals. This
means that the tool is not dependent
on the specific concrete format be-
ing used. However, this separation
can be problematic since in some
situations information from the
concrete representation is actually
needed. For instance, a type checker
might generate an error message
that has to be displayed to the user.
For this message to be of value, the
specific location of the error has to
be provided.
 The solution to this problem is
to associate each abstract syntax
node with an object defining the
context of that node. This might,

for example, be the start and end
line and column for the node; the
information required here may
vary according to the nature of
the language, the tool, and the
concrete format in question. As
with the abstract syntax, client
tools should be shielded from the
implementation details of context
information, so an interface is
used and classes implementing
this interface are internal. It’s pos-
sible that there may be multiple
context information classes ac-
cording to the concrete repre-
sentation. This is suggested in
Figure 2 where a plain text context
information class is used.

Parsing
 To create a parser, the concrete
syntax presented earlier needs
to be married with the abstract
syntax classes. This is shown in
Listing 2. Note that there will
typically be one parser for each
concrete syntax supported.
 This example is based on JavaCC,
but the principle applies to other
parser generators: the semantic ac-
tions in the matching rules in the
parser definition are used to create
and instantiate abstract syntax
objects, resulting in the creation of
an abstract syntax tree correspond-
ing to the input text. This abstract
syntax tree will be the input to other
components in the tool that require
the input text.
 If the input format is XML, then
the approach would be somewhat
different; typically a JAXB compiler
would be used to convert an XML
document into a parse tree. How-
ever, the details, though interest-
ing, are beyond the scope of this
article.

Use of the Parse Tree
 Components interact with the
parse tree using the visitor pat-
tern. This allows for a clean sepa-
ration between the abstract syntax
and the components using the
abstract syntax. In this case only
concrete abstract syntax classes
should be visited. For example,
consider the calculating engine
used to compute the result of an
expression entered in the calcula-
tor (see Figure 3).

 Figure 2 Context information classes

 Figure 3 Engine Class

JDJ.SYS-CON.com46 September 2005

Techniques

 Listing 1: Calculator concrete syntax
 TOKEN:
{
 <DECIMAL_LITERAL: [“1”-”9”] ([“0”-”9”])* >
}

void Input() :
{}
{
 Expression() (“\n”|”\r”)
}

void Expression() :
{}
{
 c1 = Constant()
 (op = BinaryOperator() c2 = Constant()
)*
}

void BinaryOperator() :
{}
{
 (
 “+” | “-” | “*” | “/”
)
}

void Constant() :
{}
{
 <DECIMAL_LITERAL>
}

Listing 2: Parser Definition
TOKEN:

{

 <DECIMAL_LITERAL: [“1”-”9”] ([“0”-”9”])* >

}

ASTExpression Input() :

{

 ASTExpression astExpression;

}

{

 astExpression = Expression() (“\n”|”\r”)

 {

 return astExpression;

 }

}

ASTExpression Expression() :

{

 ASTExpression c1 = null;

 ASTConstant c2 = null;

 ASTBinaryOperator op = null;

}

{

 c1 = Constant()

 (op = BinaryOperator() c2 = Constant()

 {

 c1 = new ASTBinaryExpression(c1, op, c2);

 }

)*

 {

 return c1;

 }

}

ASTBinaryOperator BinaryOperator() :

{

 ASTBinaryOperator op;

}

{

 (

 “+” { op = ASTBinaryOperator.PLUS; } |

 “-” { op = ASTBinaryOperator.MINUS; } |

 “*” { op = ASTBinaryOperator.MULTIPLY; } |

 “/” { op = ASTBinaryOperator.DIVIDE; }

)

 {

 return op;

 }

}

ASTConstant Constant() :

{

 ASTConstant c;

 Token t;

}

{

 t = <DECIMAL_LITERAL>

 { c = new ASTConstant(Integer.parseInt(t.toString()),

 new PlainTextContextInfo(

 t.beginLine,

 t.endLine,

 t.beginColumn,

 t.endColumn));

 }

 {

 return c;

 }

}

 The implementation for the engine
is relatively straightforward recursing
down the tree. This is shown in Listing 3.
 Similarly a visitor can be created to
generate an XML representation of the
text input by the user as shown in List-
ing 4. This visitor would, for example,
generate the following XML given the
input “1+2-3” (white space added for
legibility):

<binaryexpr>

 <binaryexpr>

 <constant value=”1”/>

 <op value=”PLUS”/>

 <constant value=”2”/>

 </binaryexpr>

 <op value=”MINUS”/>

 <constant value=”3”/>

</binaryexpr>

 Note that the usual provisos concern-
ing the use of the visitor pattern apply.
In particular if the language is such that
the syntax will change frequently, there’s
a significant overhead associated with
updating all of the visitors. However,
most stable languages change their
syntax infrequently.

Conclusion
 This article has presented an ap-
proach to developing language tools
that has been used extensively for

several products and projects that I
have been involved with. Experience
shows that separating the triumvirate
of core functionality, input format,
and parsing ensures the flexibility
required for evolution over time. By
explicitly treating concrete syntax,
abstract syntax, and context separate-
ly, it’s possible to develop language
tools that are modular, extensible, and
maintainable.

References
• Source code http://jdj.sys-con.com
• https://javacc.dev.java.net/
• http://www.eclipse.org/
• http://java.sun.com/xml/jaxb/

47September 2005JDJ.SYS-CON.com

Listing 3: Engine Implementation

public class Engine implements IASTVisitor {

 private int result = 0;

 public void visitBinaryExpression(

 ASTBinaryExpression binaryExpr) {

 binaryExpr.getLeft().accept(this);

 int leftValue = result;

 binaryExpr.getRight().accept(this);

 int rightValue = result;

 switch (binaryExpr.getOperator()){

 case PLUS:

 result = leftValue + rightValue;

 break;

 case MINUS:

 result = leftValue - rightValue;

 break;

 case MULTIPLY:

 result = leftValue * rightValue;

 break;

 case DIVIDE:

 result = leftValue / rightValue;

 break;

 }

 }

public void visitConstant(ASTConstant c) {

 result = c.getValue();

 }

 public int getResult(){

 return result;

 }

}

Listing 4: XML Generator

public class XMLGenerator implements IASTVisitor {

 private StringBuffer buffer = new StringBuffer();

 public void visitBinaryExpression(

 IASTBinaryExpression binaryExpr) {

 buffer.append(“<binaryexpr>”);

 binaryExpr.getLeft().accept(this);

 buffer.append(“<op value=\””);

 buffer.append(binaryExpr.getOperator());

 buffer.append(“\”/>”);

 binaryExpr.getRight().accept(this);

 buffer.append(“</binaryexpr>”);

 }

 public void visitConstant(IASTConstant c) {

 buffer.append(“<constant value=\””);

 buffer.append(c.getValue());

 buffer.append(“\”/>”);

 }

 public String getXML(){

 return buffer.toString();

 }

}

JDJ.SYS-CON.com48 September 2005

t a presentation a number of
years ago given by Josh Bloch
he made a comment that Java
as a language hit the “sweet

spot” of programming. His metaphor
was based around the fact that the
language was straightforward to learn
and that rather than containing many
esoteric coding constructs, writing and
understanding a Java program was a
relatively easy task.
 I think Java is at a very critical point
at the moment where it is slipping away
from its sweet spot and this worries me.
Two things are to blame: annotations
and aspects.
 An annotation allows a programmer
to flag a part of a program with @ state-
ments that at first glance are a glorified
comment. A developer can define his
or her own annotation that has typed
properties and validation rules about
where it can be used in code, both of
which the compiler enforces. What you
do with annotations is up to you, but
a good example could be to formally
flag which methods were fixed in a par-
ticular release, by whom, and why. For
example, with an annotation called Mod
you could write code like:

@Mod(bugNumber=5477,fixedBy=”Fred”);

public void foo(){

 …

}

 This is better than putting the details
in a comment // Fixed by Fred for 5477
because programs can use the java.lang.
reflect API to query classes and methods
for the presence of annotations, so a
report of fixes done by Fred could be
written.
 The problem occurs when an annota-
tion is more than a glorified comment
and contains information that is an
instruction to the program itself. EJB 3.0
has fallen desperately foul of this and I
saw some horrid sample code recently:

@Stateless

@Remote(Example.class)

public class ExampleBean implements Example

{

 @PermitAll

 @TransactionAttribute(TransactionAttribut

eType.REQUIRES_NEW)

 public String getName(int id)

 {

 // Method body here

 }

 @RolesAllowed({“administrator”,”power_

user”});

 public void deleteName(int id)

 {

 // Method body here

 }

 What has occurred is, basically, a ton
of semantic program details about how
the EJB should be deployed that used to
be provided in the deployment descrip-
tor has been slammed into the class as
annotations. It is way, way wide of the
sweet spot and looks more like a cross
between a set of assembler op-codes
mixed with some kind of fourth genera-
tion language syntax. Whatever it is, it
isn’t Java.
 Kent Beck once said that having lots
of classes and lots of methods is basi-
cally what good OO is about. Design
Patterns, the bible of good OO practice,
espouses patterns such as the strategy
and mediator that encourage and teach
the strength and power of separation. By
contrast, the EJB specification actually
boasts the fact that having everything
defined in a single file is a good thing.
Separate XML wasn’t great but what
would have been wrong with just mov-
ing from XML to something akin to
BeanInfo where the logic and rules were
held in Java code elsewhere?

 This segues nicely into aspects. At the
first presentation I saw on the subject I
was told that the raison d’etre for their
existence is so that only a single source
file has to be touched to implement a
piece of functionality. While I understand
this as a goal, it just isn’t really practical
to make this your overriding goal and
then jump through hoops to ensure that
this is the focus of all your development.
In my experience, with all but the most
trivial change, to fix a bug or implement
a feature you need to change several
classes, perhaps an interface or two, and
hopefully do some refactoring along
the way to improve the overall system
entropy. There is nothing wrong with
good old-fashioned programming like
this and, when I encounter aspects, I
see a group of people driven with a zeal
to do differently. Instead they code files
that contain sets of instructions to a
preprocessor that will go and modify the
existing multiple files that you should
have fixed by hand in the first place. As
with annotations, there are good uses
of aspects, namely introducing logging
behavior, performing code metrics, or
coding rule enforcement. Too far beyond
this and they just become clever magic
that is both confusing and silly. Aspect
fever seems to be riding the hit parade at
the moment as the silver-bullet answer
to everyone’s problem.
 What both annotations and aspects
bring to Java is some kind of powerful
dark magic where source is now littered
with semantic fluff disguising itself as
something more trendy but wielding ter-
rible power. What you write is no longer
what gets run – someone else’s prepro-
cessor mangles it, clever code obscures
this fact from you while you debug it, and
rather than the JVM just executing the by-
tecodes from the source you wrote, there
is now some kind of execution inference
engine analyzing formalized comments
to determine the code path instead.
 I fear the worst for the language.
Pandora’s box has been opened, Java
coding no longer has any rules to govern
it, and muggle programmers are no
longer safe.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

One Size Fits No One

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

A

JDJ.SYS-CON.com50 September 2005

hen speaking of Web application devel-
opment today, it’s difficult to ignore the
overwhelming influence of the Portlet
Specification (JSR-168). Even before the
specification was formally finalized by

the expert group, the Java world saw older CMS applica-
tion implementing it and new portal software arrivals in
the market. The proverbial “gold rush” to develop new
applications as portlets, refactor existing applications
to comply with the specification, and deploy new Web
sites on portal software is not without good reason. The
Java community was lacking a unifying specification in
the Web tier, where all previous work could be brought
together and leveraged, removing the tedious tasks devel-
opers once had to endure when creating most common
Web applications.
 Portals, as defined by the specification, are a new
arrival in the market and much of the fanfare is due
to just that. They have been touted as the “magic
bullet” of Web application development and a new
standard in developing scalable, flexible, and pluggable
software components. Having lived through the dot-
bomb era, we are not alone in knowing that the “newness
factor” and the endless search for the “killer-app” can
often cloud the judgment of decision makers regardless
of functionality.
 Although portals, as they exist today, promise to
provide improved functionality by building on and
consolidating previous work in this area, features and
functionality should be the main determiners of whether
to deploy a portal, a CMS, or develop a Web application
using JSPs and servlets. However, before considering
deploying a portal, you must have a solid understanding
of what a portal actually is, what technologies are com-
monly found in them, and even appreciate how portlets
interact with the portal.

Portal Overview
 Reading section 2.1 of the Portlet Specification, a portal
is defined as:

… a web based application that – commonly – provides
personalization, single sign on, content aggregation
from different sources and hosts the presentation layer of

Information Systems. Aggregation is the action of integrat-
ing content from different sources within a web page. A
portal may have sophisticated personalization features
to provide customized content to users. Portal pages may
have different set of portlets creating content for different
users.

 As the specification states, portals commonly allow for
personalization, SSO, and content aggregation. Figure
1 shows elements commonly found in open source and
proprietary portal software.
 Before we continue, it’s important that you understand
the items in Figure 1. It’s likely that these functions alone
will dictate whether you decide on implementing portal
software. Frankly, these are among the most important
and labor-intensive features to develop for most Web ap-
plications, so allowing a portal to perform the heavy-lift-
ing exercises may be in your best interest.
• Content aggregation: Portals have the ability to present

the user with information from different sources, dis-
played within portlets on a portal page (see Figure 2).

• Caching, clustering: Like most enterprise Web appli-
cations, portals tend to leverage existing caching and
clustering technologies for increased performance and
reliability.

• Security and SSO: The ability of a portal to integrate
with an existing security schema used for authentica-
tion and/or authorization.

• JSR 168 compliance: Java portals, open source or
not, all share this common bond as a unifying theme,
allowing for portability across all vendor platforms.

• Content management: The ability of a portal to serve
and allow administrators to manage content.

• Personalization: The capability of a portal user or
administrator to personalize the portal and/or the
individual portlets.

 Of course, the diverse group of portal vendors presently in
the market will offer differing sets of components to leverage
within their portal, even addressing points where the Portlet
Specification in its current state falls short, such as Inter-
Portlet communication, portlet filters, extending the CSS
support, and integration of existing frameworks (e.g., Struts or
JSF).

Roy Russo is a developer

at JBoss Inc.

roy.russo@jboss.com

by Roy Russo and Julien Viet

W

Are Portals the

‘Magic Bullet’
of Web Application Development?

The many advantages to utilizing portal software

Feature

Julien Viet is lead developer

at JBoss Inc.

julien@jboss.com

51September 2005JDJ.SYS-CON.com

 In addition to the above cases of technology commonly
found in portal software, the specification also defines the
concept of a portal page. A screenshot of JBoss Portal us-
ing a custom layout and theme is used as an example here
(see Figure 3).
 The process of generating a portal page works like this
(see Figure 4):
1. Portlet generates markup and dispatches it to the port-

let container.
2. The portlet container sends the portlet content to the

portal.
3. The portal adds decorations to these fragments, e.g.,

titles and window controls
4. The portal places a new decorated fragment on a page.

 JSR 168 seeks to define the contract between the portal
and the components running inside it. If you elect to
deploy a portal, it is this specification you should adhere
to, ideally. Some vendors may have their own proprietary
APIs that, we believe, should be avoided for standard
portlet development. These proprietary APIs result in
vendor lock-in scenarios affecting the portability of the
portlets created and increased maintenance and training
costs in the long run. We would invite anyone comfort-
able developing servlets to read JSR 168, as it’s very easy
to read.

Portlet Overview
 This section provides a brief overview of some of the items
covered within the specification document. We made an
effort to not describe in deep detail all the technical facts in
the portlet API. Frankly, that was not the goal of this article,
as countless other articles and books have covered these
points in the past. This section will cover items at a high level
that we see as important differentiators for those evaluating
the use of portal software.

Portlet, Defined
 A portlet is a Java application, packaged in a WAR file, and
managed by the portlet container. They are pluggable com-
ponents responsible for presenting fragments of data from
information systems. Portlets can be as small as a content
portlet that simply displays a fragment of HTML, or as large
and complex as a CRM or e-commerce application.

The Portlet Life Cycle
 The life of a portlet can be summarized by listing the spe-
cific methods that are called during a transaction:
1. init(PortletConfig): Called by the portlet container,

this method initializes the portlet using a configuration
object. A sample configuration is shown in Listing 1.
Configuration information for an individual portlet can be
accessed at any time after initialization.

2. processAction(ActionRequest, ActionResponse): This
method is called if the client initiated a call request from
an action URL. If the client’s request is a render URL, this
method is not called.

3. render(RenderRequest, RenderResponse): This method
generates the content upon being called by the portlet
container.

4. destroy(): Called by the portlet container when it deter-
mines the portlet should be removed from service.

Portlet Modes
 Portlet mode functionality allows a portlet to display
different information depending on which mode the user
is interested in (the same can be said for window states,
covered later). The portlet mode names given are rather
obvious to anyone reading them as to what their function
should be. Using a generic example of a WeatherPortlet,
we can speculate on the definitions for each of the default
modes covered in the specification:
• VIEW – doView(): Generates a content fragment dis-

playing weather from NOAA.
• EDIT – doEdit(): Allows a user to modify his or her

preferences, say, forcing the portlet to only show the
weather in Miami, FL, USA.

• HELP – doHelp(): Displays a help HTML fragment with
instructions on how to use the portlet.

 Some vendors define custom portlet modes that your
portlets can implement. Support for custom portlet modes
is briefly defined in the specification, and is as simple as
adding a custom-portlet-mode node to the portlet descrip-
tor and any other vendor-specific modifications to the
descriptor or the portlet class.

 Figure 1 Elements in a typical portal platform

 Figure 2 Aggregate contents in a portal

JDJ.SYS-CON.com52 September 2005

Window States
 Window states control how much space any portlet
takes up on any given page. They function when the port-
let container passes the user’s desired window state to the
portlet. The portlet can then modify the fragment of data
to display or even change the window state while process-
ing the action request. The use of custom window states,
much like custom portlet modes, is briefly mentioned
in the specification and implemented by some vendors.
Much like custom portlet modes, the portlet descriptor
must be modified to use the custom-window-state ele-
ment. Window states are briefly explained below. Note
that not all portal vendors translate the specification in
the same way, leaving much of the window mode behavior
up to the portal implementation:
• NORMAL: This portlet has a limited space and is prob-

ably sharing a page with other portlets.
• MINIMIZED: In this state, a portlet renders no output,

or very little content.
• MAXIMIZED: Normally, this state implies that the port-

let will take up all the viewable area on the page. Often,
it’s the only portlet displayed on that page.

The Future of Portal Software
 A subsequent version of the portlet specification should
begin in the near future. Planned for future releases are
topics such as:
• Interportlet-communication (IPC), allowing communi-

cation between portlets on events
• Portlet filters, which are similar to servlet filters
• Portlet markup extensions, where a portlet will be

able to modify the markup outside of the markup
 fragment

 Aside from additions to the portlet specification, there
has been a trend by the portal industry to integrate out-
side technologies, augmenting their products’ feature sets.
You could expect this trend to continue and expand, given
the growing popularity and success of portal software.
Some of the technologies being integrated that are worth
noting are listed here:
• WSRP (Web Services for Remote Portlets) specification:

WSRP (www.oasis-open.org/committees/download.
php/3343/oasis-200304-wsrp-specification-1.0.pdf)
allows for the creation of a distributed portal infra-
structure. This facilitates WSRP-compliant portals
being able to display portlets from another WSRP-
compliant portal.

• JCR (Java Content Repository, JSR 170) specification:
Adoption of this specification seems to be universal in
the portal space. It seeks to provide a common API to
content repositories; allows for architecture-agnosti-
cism; and features support for versioning, locking,
transactions, and searching, among other things.

• Framework support: Facilitates the use of existing
Web application frameworks to be leveraged in portlet
development, such as JSF/My Faces, Struts, and Spring
MVC. Figure 5 shows Sun’s JSF CarDemo application
running as a MyFaces portlet inside of JBoss Portal.

The Portal Option
 Now we must answer the question: “Are portals the
magic bullet of Web application development?” To answer
this question, you must look at the functional specifica-
tion for the particular application being developed. Simply

Feature

 Figure 3 Customizable look-and-feel in a JBoss Portal

 Figure 4 Generate a portal Web page

53September 2005JDJ.SYS-CON.com

because you are developing a Web application doesn’t
mean you need to build or implement an existing portal.
However, if your application specifications call for imple-
menting some of the following, it would be wise to heavily
consider using a portal:
• Single sign-on
• Personalization
• Content management
• User and role management
• Security and permissions management

 Consider also some of the questions that we encounter
from those evaluating portal software in their development
projects:

My proposed Web application requires some of the features
commonly found in portals; should I just develop my own
proprietary architecture in-house then?
 What we have found in the past when development
teams create systems such as these, they tend to cobble in
random odds and ends to fill the requirements listed with
little consideration given to how all these disjointed parts
will work together – if the component will be maintained
in the future, will there be someone responsible for
keeping up with the particular component, or if support
outside of a mailing list is even offered for that particular
component. During the development of JBoss Portal, we
stayed away from creating what we refer to as a “Fran-
kenstein Project” and leveraged technologies that were
proven in production environments (see Figure 6) and
supported in-house by the lead developers. This philoso-
phy aided us in identifying problems when they popped
up, and having the knowledge on-staff to deal with them.
How comfortable are you allowing your developers to
pick and choose random components from the Internet
and glue them together? Leveraging portal software to
handle the heavy lifting and intricacies of a Web applica-
tion’s development allows developers to concentrate on
portlet development, which is probably the integral part
of the business anyway.

Do I need a CMS or a Portal?
 The line between each is a blurry one. Portals tend
to offer CMS capabilities, in general, on par with all the
features traditional content management systems do. The
main differentiator between a “pure CMS” and a portal
is adherence to the portlet specification, or allowing JSR
168–compliant portlets to be deployed within the con-
tainer. So you see, a portal can have CMS capabilities, but
not all CMSs are portals. Aside from this one dissimilarity,
most CMS offer the same feature set as portals.
 We will also say that we are cautious of traditional CMS
that later cobble in support for the portlet specification.
Having our own JBoss Nukes CMS, we can attest to the
difficulties inherent in performing such a refactoring of
the core architecture. Sure, it cost us in terms of time-
to-market, but starting from scratch with a new portal
architecture bought us endless flexibility and scalability.
Cutting corners is not an option and we would be wary of
any CMS-vendor-turned-portal-vendor for this reason.

 Figure 5 A JSF application running as a portlet in the JBoss Portal server

 Figure 6 The technology stack in JBoss Portal

JDJ.SYS-CON.com54 September 2005

Wouldn’t retraining my staff to develop portlets nullify all
economic gains compared to creating our own Web application
with existing competencies?
 If your developers are savvy enough to tackle SSO, per-
sonalization, internationalization, caching, clustering, etc.…
and make it all accessible via servlets and JSPs, they are more
than able to absorb all the technical knowledge found in the
portlet specification in a short amount of time. After all, the
portlet specification is extremely comparable to the servlet
specification. The main differences between the specifica-
tions are:
• Portlets are not tied to specific URLS, making use of the API

to create URLs that are parsed through the portal server
and eventually execute within a specific portlet.

• Many instances of portlets can co-exist on any assigned
page.

• Portlets leverage Portlet Modes and Window States, allow-
ing for different content to be rendered depending on a
user’s desire.

• Portlet generate content fragments.
• Portlets are written to the javax.portlet package.

There are close to a dozen major portal players in the market.
Which one should I choose?
 Being JBoss Portal developers, it would be seen as biased
for us to evaluate the different players and furnish a result on
which you should choose to go with, but there are a few items
to investigate when choosing which is best for your business.

Is the portal JSR168 compliant? (Does it pass Sun’s TCK?)
 For reasons of portability and future maintenance, it
would not be wise to develop to a proprietary API. The
portlet specification continues to advance and knowl-
edge-sharing by the community is extremely active. For
these reasons, vendor lock-in should be avoided.

Are you considering open source or proprietary?
 Open source and proprietary portals share essentially
the same features currently, with one exception: some of
the proprietary vendors supply smooth integration with
other applications and systems they offer. For instance, a
proprietary portal can be bundled with an existing CRM or
e-commerce tools offered by the same company. If the need
and budget exists to have a portal tightly integrated to other
proprietary information systems, you should consider the
proprietary offerings. On the other hand, we have seen a
trend recently where businesses deploy open source portals
and then custom develop the portlets that aggregate data
from the proprietary systems in the back end. In many
cases, the cost savings were immense, even when custom
portlet development was outsourced to a third party as
opposed to having paid the licensing and consulting costs
from the proprietary vendors. In addition, a business may
find the ROI acceptable for many more projects using an

open source portal instead of an expensive proprietary por-
tal. The open source portal will save a lot of developer time
and reduce project risk because the presentation architec-
ture is standards based and community tested where the
in-house custom presentation infrastructure is not.

Does the portal vendor offer reliable support services for its
products?
 As with any piece of software, reliable support is extremely
important. This is especially true with portals, as there is of-
ten a diverse set of components sitting under the hood man-
aging a myriad of operations. Although some open source
portals are backed by proven and professional support
services, some of them will leave your development team at
the mercy of a mailing list or a message board. Proprietary
or not, you should ask who/what/when will be answering
your support questions and only contract support from an
organization with demonstrated high-quality support and
customer satisfaction.

Conclusion
 As you can see, there are many advantages to utilizing
portal software. The essential decision that will take place
will require evaluating whether a portal, CMS, or custom
Web application is the path to proceed on. The case for
the use of portal software is not cut and dry, but there are
numerous advantages in adopting it like leveraging exist-
ing technology to perform the heavy lifting associated with
Web application development, numerous open source and
proprietary vendors backing their products with support
services, and a shallow learning curve for JEE developers
with regards to the portlet specification and existing MVC
frameworks.

Listing 1: A sample portlet configuration file

<portlet>

 <portlet-name>ContentPortlet_1</portlet-name>

 <portlet-class>org.jboss.portal.core.portlet.cms.

 ContentPortlet</portlet-class>

 <supported-locale>en</supported-locale>

 <resource-bundle>Resource</resource-bundle>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>VIEW</portlet-mode>

 </supports>

 <portlet-info>

 <title>Ferrari</title>

 </portlet-info>

 <portlet-preferences>

 <preference>

 <name>uri</name>

 <value>/default/side.html</value>

 </preference>

 </portlet-preferences>

</portlet>

Portals, as defined by the specification, are a new arrival in the market
and much of the fanfare is due to just that”“

Feature

���������������������������������
���������������������������

24/7

Visit the ���
���������������

Website Today!

��

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
��
���

����������
���

�������������
��

��������
��

����������
��

��������
���
�
����������
��

��������������������
���

���������������������������������
���������������������������

24/7

���������������������������������
���������������������������

24/7

Visit the ���
���������������

Website Today!

��

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
��
���

����������
���

�������������
��

��������
��

����������
��

��������
���
�
����������
��

��������������������
���

���������������������������������
���������������������������

24/7

JDJ.SYS-CON.com56 September 2005

n the five years that I have worked
in Web solutions practices, a typi-
cal business problem has changed
from “we need a new Web site” to

“we need to regain control over our
existing sites.” It’s not uncommon
for large corporations to have hun-
dreds or even thousands of different
Web sites spread over various service
lines, geographies, and organizational
boundaries. This presents challenges
ranging from logistical and technical,
to creative, business, and legal. This
article focuses on solving the problem
of ubiquitous navigation across diverse
Webscapes.

In the Beginning There Was the RFP
 Let’s start with a real-life problem.
A global financial services company
whose products you probably carry
in your wallet identified a need for a
ubiquitous navigation utility. They have
to manage myriads of intra- and inter-
site references spanning nearly 1,000
of their Internet, intranet, extranet, and
partner Web sites across the globe. It
should maintain the infrastructure of
navigation assets, such as familiar top,
left, and bottom navigation bars, site
maps, navigable taxonomies, features
and highlights, inline ads, and cross ref-
erences, while ensuring that all content
is reachable and there are no broken
links.
 Being a large company, it issued an
RFP and received numerous responses,
mostly from product vendors, includ-
ing a Web testing tool and several
portal and content management plat-
forms. Unfortunately, none of them
would satisfy all the requirements.
CMS is able to publish the assets and
can do some initial validation, but
cannot maintain the validity of links
at runtime. Portals don’t have that
problem, but can only maintain links
to their own pages. Site crawlers can
detect broken links only after they ap-
pear on the sites.

 My team was the only services orga-
nization that responded to the RFP. To
differentiate against stronger competi-
tion, we needed to come up with a
perfect solution that would satisfy all
the requirements, while delivering com-
parable or better scalability, maintain-
ability, and, ultimately, value. Thus we
came up with the idea of a target-centric
navigation solution.

Target-Centric Navigation Solution
 The only way to ensure that the site
never displays a broken link is to vali-
date all the links at the page rendering
time, suppressing the ones that point to
unavailable resources. The simplest way
to do it is to use classes from package
java.net as shown in the following code:

public static boolean isBrokenLink(String

linkURL)

{

 try

 {

 // Throws MalformedURLException if

 //invalid syntax

 URL toTest = new URL(linkURL);

 // Throws IOException for some URL

 //types

 URLConnection c = toTest.open-

 Connection();

 // Throws IOException when site not

 //found

 c.connect();

 // Throws IOException when page not

 //found

 c.getContent();

 return false;

 }

 catch (MalformedURLException ex) {}

 catch (IOException ex) {}

 return true;

}

 However, a single page can con-
tain dozens even hundreds of links,
many of them pointing to dynamic
pages, so validating each one using
the above method would result in very

poor performance. Furthermore, this
method will not work at all if the target
site intercepts its own 404 errors and
redirects them to a not found page.
A better solution would be to create
a Target Registry containing records
about every navigable target, including
pages, documents, navigation nodes,
and media streams. Every navigation
link on the page can then be validated
just before rendering with a single
query to the registry, ensuring opti-
mum combination of performance and
reliability.
 Sometimes it is not sufficient to
remove a broken link by itself – when
it is accompanied by the contextual
information, such as text or images,
the entire page element should be
removed. A good way to implement
navigation assets is to assemble
them from contentlets, or elementary
units of dynamic content present-
able on a Web page, as introduced
in the article I co-wrote with Alexey
Yakubovich about Vitrage framework,
“Development of Component-Oriented
Web Interfaces” (JDJ, Vol. 10, issue 3).
A contentlet has a number of core
attributes: Name, Description, Im-
age, and Display Order. Additional
attributes, such as Date, Type, and
Source, may be represented as needed
for a particular problem domain or
implementation. All of these attributes
are optional. Content Reference is a
type of contentlet that points to a spe-
cific URL. As shown in Figure 1, there
are several concrete types of content
references pointing to different types
of targets, such as dynamic pages,
documents published through CMS,
external links, and media streams.
 Due to the diversity of possible
targets, the target registry can be real-
ized as a single entity or as a logical
collection of target-specific registries.
PageRegistry would contain the infor-
mation about all dynamic pages in the
system. It usually has to be imple-

by Alex Maclinovsky

Navigating the Global Enterprise

I

Alex Maclinovsky is a principal

application architect with

SeeBeyond Technology’s Center

of Excellence specializing in

composite applications based

on J2EE technologies. For over 15

years, he has focused on

architecting and developing

large distributed object systems

on the enterprise on a national

and global scale. Alex’s

professional interests include

solution-oriented architectures,

adaptive frameworks, and OO

methodologies, and his

professional profile can be

 found at www.geocities.com/

maclinovsky/pro

amaclinovsky@seebeyond.com

Developing a ubiquitous navigation utility

Navigation

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Altova www.altova.com 978-816-1600 4

 Arcturus Technologies www.arcturustech.com 703-822-4582 31

 ceTe Software www.dynamicpdf.com 800-631-5006 39

 Common Controls www.common-controls.com +49 (0) 6151/13 6 31-0 45

 ExtenTech www.extentech.com/jdj 415-759-5292 49

 Google www.google.com/jdj 650-253-0000 35

 ILOG http://diagrammer.ilog.com 800-FOR-ILOG 25

 InetSoft www.inetsoft.com/jdj 888-216-2353 27

Information Storage & Security Journal www.issjournal.com 888-303-5282 57

 InterSystems www.intersystems.com/cache14p 617-621-0600 Cover IV

 IT Solutions Guide www.sys-con.com/it 888-303-5282 59

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 47

 Jinfonet Software www.jinfonet.com/jp9 301-838-5560 41

 M7 www.m7.com/power 866-770-9770 33

 MapInfo www.mapinfo.com/sdk 800-268-3282 19

 Microsoft microsoft.com/connectedsystems Cover II

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 53

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 7

 Perforce Software www.perforce.com 510-864-7400 11

 Phoneomena www.phoneomena.com 352-373-3966 42-43

 ReportingEngines www.reportingengines.com 888-884-8665 23

 Smart Data Processing, Inc. www.weekendwithexperts.com 732-598-4027 61

 Software FX www.softwarefx.com 800-392-4278 Cover III

 Synaptris www.intelliview.com/jdj 866-99IVIEW 37

 SYS-CON Website www.sys-con.com 888-303-5282 55

 Windward Studios, Inc. www.windwardreports.com 303-499-2544 15

JDJ.SYS-CON.com58 September 2005

mented from scratch; however, it is well
worth the effort because it can be used
not only to support navigation, but
also for search, security, automatic site
maps and indices, supporting page life
cycles, etc. Document Registry or CMS_
Cache usually comes as a part of the
Content Management System and does
not require any custom implementa-
tion. Approved External Links store can
be implemented as a part of PageRegis-
try or on its own, and similarly has uses
beyond navigation. Regardless of the
implementation details, use of target
registries would allow bulk validation
of all navigation assets on a page in a
single though possibly complex query.

Implementation Considerations
The Links
 Content References are flexible
enough to implement any navigation
assets found on today’s Web sites.
They have a built-in validation mecha-
nism to prevent rendering of broken
links at runtime while maintaining
the correct structure of the remaining
page. When used in conjunction with
a compartment-oriented presenta-
tion framework such as Vitrage, which
allows bulk loading of all contentlets
used on a page in a single database
hit, content references have the same
or better performance than any other
dynamic navigation mechanism.
 Navigation compartments can be
easily extended to non-Java technolo-
gies, such as static, PHP, and even ASP
pages. You can define a special type of
compartment, which, instead of gen-

erating HTML into a ServletResponse,
would rewrite a predefined region of an
external file.
 If you opt to not use compartment-
oriented presentation framework, you
can still implement a deferred con-
tentlet-based validation through the
use of a Response Filter from package
javax.servlet. To use this mechanism
described in detail in “Adding Inter-
nationalization to Business Objects”
(WLDJ, June 2005), each contentlet
should be rendered surrounded with
meta-information tags containing
references to the target registries. The
response filter then parses ServletRe-
sponse, finds all the tags, validates
them against the registries, and
removes the tags along with invalid
content references.

The Registries
 So far we assumed a single tar-
get registry at least per target type.
However, for an organization that
maintains hundreds of Web sites
hosted in dozens of locations, this
approach would not work due to large
amounts of WAN traffic required to
validate every link on every site. Such
cases call for a distributed solution
based on federated registries. There
are multiple ways to implement such a
federation, ranging from a centralized
replication tree to a true federation
of independent registries. We found
that a domain-based federation offers
an optimal combination of control
and performance. In this approach, a
master copy of each target description
is stored in a single registry or domain,
usually collocated with the site that
hosts this target. A copy of this record
is kept in each registry collocated with
sites that contain links to that target.
These secondary registries are respon-
sible for keeping it up to date with the
master.
 The External Links Store differs
from other target registries, because
the actual targets are usually outside
of the control of the organization. It
can be kept up to date via a crawler
that would continuously go over
the store, validating links through a
mechanism similar to one described
in the beginning of the article. This
would happen in a separate process
and would not affect the performance
of the site.

The Control
 Both the target description and
contentlet-based navigational as-
sets can be centrally controlled and
published via a Business Object
Publishing Service, as described in the
article “Publishing Business Objects
in Portals” (WLDJ, July/August 2004).
This mechanism allows authoring and
controlling highly structured con-
tent or application data in a content
management system. Using a CMS
has multiple advantages and allows
navigation administrators to use a
familiar environment and to leverage
all versioning, security, and workflow
mechanisms available in it. The Busi-
ness Object Publishing Service pushes
this data into target databases while
maintaining its structure, semantics,
and referential integrity.

Conclusion
 Maintaining uniform, up-to-date,
and reliable Web navigation has
become an accepted challenge in
today’s enterprise infrastructure.
Although many tools on the market
can help to address parts of this
problem, there is not a single one
that offers a complete end-to-end
solution by itself. The proposed
target-centric navigation approach
described in this article, in combi-
nation with compartment-oriented
presentation frameworks and busi-
ness object publishing services, can
offer such a solution that would meet
most functional and non-functional
requirements.

References
• Maclinovsky, A., and Yakubovich,

A. “Development of Component-
Oriented Web Interfaces.” JDJ, Vol.
10, issue 3: http://java.sys-con.com/
read/48536.htm

• Maclinovsky, A. “Adding
Internationalization to Business
Objects.” WLDJ (Vol. 4, issue
3): http://java.sys-con.com/
read/102698.htm

• “Publishing Business Objects In
Portals.” WLDJ (Vol. 3, issue 6):
http://www.sys-con.com/story/
?storyid=45559&DE=1

• Web Developer’s Virtual Library
contains many useful resources on
navigation: http://wdvl.internet.
com/Location/Navigation/

Navigation

 Figure 1 Conceptual model of target-centric navigation

Legend:

Assets

Targets

PageReference

PageRegistry

DocumentReference

CMS_Cache

Contentlet

ContentReference

Link

ApprovedExternalLinks

WebImage

+image

getURL()
isValid()

name
description
displayOrder

url
width
height
altText

ExternalURL

PageId documentId

JDJ.SYS-CON.com60 September 2005

n the August issue of JDJ (Vol. 10,
issue 8) I introduced to you some
of the JSR Spec Leads who won the
distinction of Star Spec Lead at Ja-

vaOne. What they all share, I was not-
ing, is their passion for Java and their
belief in the benefits of evolving the
platform based on binary standards
that ensure compatibility, which can
make developer life a lot easier and
save costs of all kinds down the road.
It’s now time you met the other stars of
the constellation.
 I’ll start with Mark Hornick. He ad-
mits from the start that his keen inter-
est in object-oriented design and de-
velopment dates back to grad school.
He confesses that Java technology
had been of particular interest to him,
“Ease of programming, especially with
threads, was particularly exciting,”
he says. Mark is currently a senior
manager in the Data Mining Technolo-
gies Group at Oracle Corporation and
by the time he joined the company, he
was ready to undertake two Java tech-
nology development efforts: Oracle
Data Mining and Oracle Personaliza-
tion. Oracle Data Mining was the seed
that grew into the Java Data Mining
(JDM) standard, versions 1.0 and 2.0
(JSR 73, JSR 247), which Mark initiated
as Spec Lead and began participating
in the JCP program mid-2000.
 Mark had a head start on the Star
Spec Lead program, having been
nominated for “Most Outstanding
Spec Lead” in 2004 and again in 2005.
Mark says, “I think the Star Spec Lead
program is useful in that others can
learn how Expert Groups are run and
who is running them. It creates more
of a community rather than abstract
names on JSR numbers.”
 Jere Käpyaho is also a Star Spec
Lead. He works for Nokia Corpora-
tion as a specialist for Java Platform
Standardization, in the technology
platforms unit. He thinks “there is so
much potential in Java technology to

do globalized applications properly”
that he is set on tapping it for the JCP
standards initiatives he’s working
on. He became a Spec Lead in 2004,
previously served as an Expert Group
member, and also helped with other
JSRs that Nokia, a member of the
Executive Committee, is involved in.
He has contributed to six JSRs in all:
JSR 238 Mobile Internationalization
API and JSR 258 Mobile User Interface
Customization API as a spec lead;
JSR 75 PDA Optional Packages for the
J2ME Platform and JSR 204 Unicode
Supplementary Character Support as
an expert; and JSR 118 Mobile Infor-
mation Device Profile 2.0 and JSR 139
Connected Limited Device Configura-
tion 1.1
 Another spec lead from Nokia,
Kimmo Loytana, wants “to make Java
technology in embedded devices a
rich and robust platform for appli-
cations.” A Star Spec Lead himself,
Kimmo has been heavily involved in
the standardization of Java technology
and Java technology-based software
platforms and serves as a consultant
for the creation of Java technology
implementations for Nokia’s products.
Kimmo had gotten involved in Java
API specification activities in coopera-
tion with Sun even before the JCP pro-
gram existed (JavaTV API, partly also
following JavaPhone API). From the
very beginning in 1999 Nokia formally
joined the JCP program as a member,
and since then Kimmo has participat-
ed in more than 15 JME-related JSRs
as an Expert Group member.
 The next Star Spec Lead takes us to
Day Software in Switzerland. David
Nuescheler, the company’s CTO, began
working with Java technology when
the decision was first made to adopt
the Java Platform for Day’s entire suite
of products. Since then, he has worked
primarily on server-sided Web projects
as a solution and product architect. By
2001, he had joined the JCP program,

and he is currently Spec Lead for JSR
170 Content Repository for Java Tech-
nology API.
 About the Star Spec Lead initiative,
David says, “The Star Spec Lead pro-
gram is a great platform for exchang-
ing experiences between Spec Leads,
probably the best way to learn how to
run a JSR…”
 When it comes to involvement with
Java technology, Eric Overtoom may
be one of the most recent converts,
but he has certainly made up for it
by jumping straight into Spec Leader
stardom.
 As a Distinguished Member of the
technical staff at Motorola, Eric is
involved in handset software archi-
tecture and internal API design, and,
to some degree, system architecture.
He became involved with the JCP
program in September, 2004, when
he became co-Spec Lead of JSR 253,
along with Ekaterina Chtcherbina of
Siemens AG. “Having both develop-
ers/manufacturers and users has
helped us to identify requirements
that didn’t come from the initial pro-
posed API, and cases where the API
as proposed would have led to extra
work for application developers trying
to use it (although less implementa-
tion work for the JSR developers).
We’ve been able to balance the com-
plexity between API implementation
and application to share the pain,”
says Eric.
 Vincent Perrot of Sun Microsystems’
Telecom Management Network team
is also the recipient of the Star Spec
Lead distinction. He got involved with
the JCP early on first as an observer of
one of the earliest Java Specification
Requests, the JSR 3, Java Management
Extension (JXM) Specification. He
helped develop and later became the
technical lead of JDMK (Java Dynamic
Management Kit), Sun’s implementa-
tion of JMX. He stays involved in the
creation of this network management

JSR Watch

Onno Kluyt

JCP Launches New Program

I

Onno Kluyt is the

director of the

JCP Program

Management Office,

Sun Microsystems.

onno@jcp.org

First constellation of Star Spec Leads takes shape – Part 2

61September 2005JDJ.SYS-CON.com

technology by participating as an observer of the JMX
technology JSRs. (JSRs 70, 71, 146, 160, 255, and 262).
 Vince, today, is the driver of the OSS/J specifications.
“Working on OSS/J is by far the most enriching experi-
ence in my professional life,” he says. “It’s a privilege to
work everyday with some of the best telecommunica-
tions experts in the world. And what many people would
consider as a human challenge, quickly turned for me
into a fantastic journey along which I made friends that I
admire, and who I hope do care about me. But OSS/J gets
all of us so busy and focused that there is no time to dream
about awards. When I was told that I was chosen by my Java
developer peers as a JCP Star Spec Lead, I was really taken
by surprise and deeply moved. I was only hoping to get
the respect of my OSS/J fellows. So being distinguished by
the Java community at large was like reaching the summit
of the mountains that surround my house, after a 10-hour
hike, to see the sunset over the Alps – a warm feeling of
accomplishment. I sincerely hope my personal experience
will help other Spec Leads move the Java platform to even
greater success.”
 When it comes to Java technology, Jim Van Peursem does
nothing by half measures. This has not passed unnoticed
and his peers in the community voted him Star Spec Lead.
He is drawn to all aspects of Java technology that relate
to mobile and wireless communication. He’s delved into
Java technology in practically every way imaginable – as
user, project lead, developer, vendor, and so on. Even his
e-mail signature, jvp, looks like a Java technology acronym.
He started working with Java technology in the very early
days, say 1995-ish, before it was even integrated with the
Netscape browser. He jumped into the JCP Program the
minute the doors opened and has been involved ever since
as a member, participant, Expert, Spec Lead, and Executive
Committee member.
 Jim found the Java technology world irresistible. At
Motorola, Jim is a Fellow of Technical Staff, holding a PhD
in computer engineering. Jim was part of the Motorola
team that worked with Sun labs on the Spotless VM that
became the KVM. From within Motorola, Jim has been
responsible for many aspects of Java technology deploy-
ment, from an independent Connected Limited Device
Configuration (CLDC) and Mobile Information Device
Profile (MIDP) implementations, to handset development,
to working with the industry in defining many related
standards. MIDP is an essential technology. Based on the
number of units shipped that incorporate it, MIDP is argu-
ably the most successful computing platform in the world.
In addition, MIDP contains a lot of functional areas that
span a broad range of required expertise. Jim says, “As you
can imagine, the combination of these two factors means
that a lot of companies and people want to join the Expert
Group to shape the solution, and companies want to have
several people with different expertise to participate in the
different areas. Contrary to some JSRs, we prefer to adopt
a more inclusive model and enable broad representation.
This leads to a much larger Expert Group than is typical.”
For example, 122 people participated in the MIDP2 Expert
Group.
 One of the Spec Lead’s most critical tasks is to stay in
constant communication with the Expert Group members,
who should all feel they have an equal voice in the direc-

tion of the JSR solution. This is especially tough with such
a large Expert Group, where, for example, face-to-face
meetings are handled in a unique way. “It’s not practical
to have a productive working meeting with 100+ people in
a room. So what we did was create two segments of mem-
bers of the Expert Group. Those who had a direct shaping
influence in the market, versus those who didn’t.” For
example, in MIDP2 the first category consisted of device
manufacturers and network operators, while everyone
else was placed in the second category. For MIDP3, VM
vendors were moved into the first category since the
spec touches on some issues that dramatically impact
VM vendors.
 For each face-to-face meeting, every company within the
first category is allowed to send one representative. A few
extra seats are reserved for people in the second category
to attend. People are selected from the second category
using a kind of round-robin lottery system, giving everyone
a chance to attend at least one face-to-face meeting if they
want to. What gives all Experts an equal voice, however, is
that everyone has full access to the e-mail discussions.
 Would you like to participate? To become part of the
community that shapes Java standards for compatible solu-
tions? Don’t hesitate to get in touch with these folks; you’ll
find it all out directly from the champions: what it means to
be a JCP member, to contribute, have Spec Lead responsi-
bilities, and take a specification to the finish line. For more
information about their accomplishments and contact
information visit http://jcp.org and the pages of the JSRs
they’re leading.

JDJ.SYS-CON.com62 September 2005

n February I took on the daunting
task of starting a new venture. It was
based on an idea I had while read-
ing a book on the low cost airline,
Ryanair. I never knew you could

lease an aircraft; I thought an airline
with billowing amounts of cash just
bought the machines and got on with it.
Wrong, wrong, and wrong with a capital
W. My rationale was simple: there are a
lot of aircraft on the ground, let’s help
get them back up in the air. How can I
provide a system that makes sure that
both parties benefit. B2B auctions!
 Aerleasing is an enterprise auction
engine for the airline industry. More to
the point, it’s 100% Java. The require-
ments were simple. Use as many open
source libraries as possible so there is
no major outlay. Borrow no money; use
only what you have on hand.
 The most expensive thing was hiring
an excellent graphic designer. Brand is
still everything, no matter how good the
programming is. With no brand identity,
you’re dead in the water before you even
start. So February was spent phoning,
talking, and listening to as many people
as I could get my hands on. I don’t think
I have ever learned so much in a short
space of time.
 I settled on Sitemesh for my template
framework, mainly because I had used
it before and could get up and run-
ning easily. I wanted users to be able to
upload assets to their auctions (such as
images and documents), so the Jakarta
Commons file upload was an obvious
choice and easy to implement.
 The first prototype got a lot of
reworking after a few of my contacts
commented on the system. “Can you get
a PDF copy?” they asked. No problem!
I had a couple of choices, FOP or iText.
I found iText was excellent in providing

PDF documents from a servlet. Easy to
set up and I put images in the document
as well. If you don’t mind crafting XSLT
stylesheets, then FOP is wonderful too.
 In the original version of Aerleasing I
provided RSS feeds (using Rome to gen-
erate them), thinking I could convert an
entire industry into using this wonderful
data. Not so. I spent more time explain-
ing it and it still caused confusion. What
these folks live on are spreadsheets, so
why try and fix something that isn’t bro-
ken. Jakarta POI was downloaded and
worked on; in fact it’s a work in progress
but I’ve used it a handful of times before
so I know what’s going on.
 I spent a lot of time thinking about
how auctions could be updated in terms
of their start and stop times. After a bit
of Googling around I found Quartz as
one thing I did require was that the time
worked outside of the app server just
in case the server crashed for whatever
reason. I didn’t want the timer stopped
because the server stopped.
 The site launched in early July and
was creating a bit of stir with some of
the industry press. Nothing like the con-
cept of Aerleasing has been seen before,
but that still didn’t stop me from having
to pick the phone up and cold call some
companies. As a technical architect it
was a bit nerving but now I actually en-
joy it. They don’t ask me about SOA, RSS,

J2EE, or SOAP but they do ask about the
system and the benefits of it.
 If you have the drive, you can work
in any industry you want. More to the
point, you can take your skills of Java,
programming, and analysis and start
crafting systems that will possibly
change the way people work. Some of
you are doing it already. I take my hat off
to you.
 One thing that came out of all of
this is how much users are not really
bothered about technical require-
ments. As I said before, RSS feeds
didn’t figure much in anyone’s thought
process, quite the opposite from where
I sat. This train of thought was backed
up by a piece on the Forbes Web site
stating that 91% of Internet users still
don’t know what RSS actually means.
A sobering thought considering the
number of RSS libraries that are out in
the Javascape.
 Another surprise was trying to
find an auction engine. You’d think
that SourceForge or one of the other
open source repositories would have
something. With the exception of a
demo engine for Hibernate, there was
nothing that I could find. Searching
on SourceForge brought up nothing;
plenty of utilities to put the last bid on
eBay, but not an engine. At the end of
the day it’s no real worry. I had the abil-
ity to put my own system together. In
terms of getting something out in the
open though, writing my own cost me
in time. I missed the Paris Air Show by
two weeks.
 So now I stand here as a founder of
a company, all my own technology, no
funding (that’s another long story for
another time) and I am loving every
minute. If you’ve ever wondered, “what
if….?” don’t wonder any more. Do it!

@ the Backpage

by Jason Bell

Do I Really Need That?

I

Jason Bell is founder of

Aerleasing, a B2B auction

site for the airline industry.

He has been involved in

numerous business intelligence

companies and startups.

Jason is based in Northern

Ireland.

jasonbell@sys-con.com

You can take your skills in Java, programming, and analysis and
start crafting systems that will possibly change the way people work”“

���

��
���
���
��
���

��������������������������� ��
���
����������������� ������������������������ ��
��
��
����������������������������������

����������������������������������

�������������������������������������� ��

����������������������������

���
� ��

� ��

